Featured Research

from universities, journals, and other organizations

Bad proteins branch out: Misfolded proteins are capable of forming tree-like aggregates

Date:
November 25, 2013
Source:
Rice University
Summary:
Researchers find that misfolded proteins form branched structures, which may have implications for Alzheimer's and other aggregation diseases.

Two types of aggregate structures found in new work by researchers at Rice University are shown in three-dimensional (top) and simplified two-dimensional (bottom) representations. In the 2-D model, bold colors indicate the actual structures found in the AWSEM molecular dynamics simulations and the light colors are examples of how these structures might further develop in the presence of more protein copies. In each protein, there are two sticky segments, shown in orange and blue. A solid line represents the rest of each protein. Dashed lines represent stabilizing interactions formed between two sticky segments from different proteins. A fibrillar structure is shown on the left and a branching structure is shown on the right. The presence of two or more sticky segments in one protein allows for a greater diversity of possible aggregate structures. This realization should spur protein scientists to design experiments to investigate these different types of structures and their potential role in misfolding-related diseases.
Credit: Weihua Zheng & Nick Schafer/Rice University

A method by Rice University researchers to model the way proteins fold -- and sometimes misfold -- has revealed branching behavior that may have implications for Alzheimer's and other aggregation diseases.

Related Articles


Results from the research will appear online this week in the Proceedings of the National Academy of Sciences.

In an earlier study of the muscle protein titin, Rice chemist Peter Wolynes and his colleagues analyzed the likelihood of misfolding in proteins, in which domains -- discrete sections of a protein with independent folding characteristics -- become entangled with like sequences on nearby chains. They found the resulting molecular complexes called "dimers" were often unable to perform their functions and could become part of amyloid fibers.

This time, Wolynes and his co-authors, Rice postdoctoral researcher Weihua Zheng and graduate student Nicholas Schafer, modeled constructs containing two, three or four identical titin domains. They discovered that rather than creating the linear connections others had studied in detail, these proteins aggregated by branching; the proteins created structures that cross-linked with neighboring proteins and formed gel-like networks that resemble those that imbue spider silk with its remarkable flexibility and strength.

"We're asking with this investigation, What happens after that first sticky contact forms?" Wolynes said. "What happens if we add more sticky molecules? Does it continue to build up further structure out of that first contact?

"It turned out this protein we've been investigating has two amyloidogenic segments that allow for branch structures. That was a surprise," he said.

The researchers used their AWSEM (Associative memory, Water-mediated Structure and Energy Model) program to analyze how computer models of muscle proteins interact with each other, particularly in various temperatures that determine when a protein is likely to fold or unfold.

The program relies on Wolynes' groundbreaking principle of minimal frustration to determine how the energy associated with amino acids, bead-like elements in a monomer chain, determines their interactions with their neighbors as the chain folds into a useful protein.

Proteins usually fold and unfold many times as they carry out their tasks, and each cycle is an opportunity for it to misfold. When that happens, the body generally destroys and discards the useless protein. But when that process fails, misfolded proteins can form the gummy amyloid plaques often found in the brains of Alzheimer's patients.

The titin proteins the Rice team chose to study are not implicated in disease but have been well-characterized by experimentalists; this gives the researchers a solid basis for comparison.

"In the real muscle protein, each domain is identical in structure but different in sequence to avoid this misfolding phenomenon," Wolynes said. So experimentalists studying two-domain constructs made the domains identical in every way to look for the misfolding behavior that was confirmed by Rice's earlier calculations. That prompted Wolynes and his team to create additional protein models with three and four identical domains.

"The experiments yield coarse-grained information and don't directly reveal detail at the molecular level," Schafer said. "So we design simulations that allow us to propose candidate misfolded structures. This is an example of how molecular models can be useful for investigating the very early stages of aggregation that are hard to see in experiments, and might be the stages that are the most medically relevant."

"We want to get the message across that this is a possible scenario for misfolding or aggregation cases -- that this branching does exist," Zheng added. "We want experimentalists to know this is something they should be looking for."

Wolynes said the lab's next task is to model proteins that are associated with specific diseases to see what might be happening at the start of aggregation. "We have to investigate a wider variety of structures," he said. "We have no new evidence these branching structures are pathogenic, but they're clearly an example of something that happens that has been ignored until now.

"I think this opens up new possibilities in what kind of structures we should be looking at," he said.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Bad proteins branch out: Misfolded proteins are capable of forming tree-like aggregates." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125164824.htm>.
Rice University. (2013, November 25). Bad proteins branch out: Misfolded proteins are capable of forming tree-like aggregates. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/11/131125164824.htm
Rice University. "Bad proteins branch out: Misfolded proteins are capable of forming tree-like aggregates." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125164824.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com
Believing in Father Christmas Good for Children's Imaginations

Believing in Father Christmas Good for Children's Imaginations

AFP (Dec. 12, 2014) As the countdown to Christmas gets underway, so too does the Father Christmas conspiracy. But psychologists say that telling our children about Santa, flying reindeer and elves is good for their imaginations. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins