Featured Research

from universities, journals, and other organizations

New weapon in war against superbugs

Date:
December 2, 2013
Source:
American Friends of Tel Aviv University
Summary:
In the arms race between bacteria and modern medicine, bacteria have gained an edge. In recent decades, bacterial resistance to antibiotics has developed faster than the production of new antibiotics, making bacterial infections increasingly difficult to treat. Now research has discovered a protein that kills bacteria. The isolation of this protein, produced by a virus that attacks bacteria, is a major step toward developing a substitute for conventional antibiotics.

In the arms race between bacteria and modern medicine, bacteria have gained an edge. In recent decades, bacterial resistance to antibiotics has developed faster than the production of new antibiotics, making bacterial infections increasingly difficult to treat. Scientists worry that a particularly virulent and deadly "superbug" could one day join the ranks of existing untreatable bacteria, causing a public health catastrophe comparable with the Black Death.

Related Articles


Now research led by Dr. Udi Qimron of Tel Aviv University's Department of Clinical Microbiology and Immunology at the Sackler Faculty of Medicine has discovered a protein that kills bacteria. The isolation of this protein, produced by a virus that attacks bacteria, is a major step toward developing a substitute for conventional antibiotics. "To stay ahead of bacterial resistance, we have to keep developing new antibiotics," said Dr. Qimron. "What we found is a small protein that could serve as a powerful antibiotic in the future."

Dr. Ido Yosef, Ruth Kiro, and Shahar Molshanski-Mor of TAU's Sackler Faculty of Medicine and Dr. Sara Milam and Prof. Harold Erickson of Duke University contributed to the research, published in the Proceedings of the National Academy of Sciences.

Teaming up with a killer

Bacterial resistance is a natural process. But over the past sixty years or so, the misuse and overuse of antibiotics has pushed more and more bacteria to become more and more resistant, undermining one of the pillars of modern health care. Recently, the World Health Organization named growing antibiotic resistance one of the three greatest threats to public health.

Bacteriophages, often referred to as "phages," are viruses that infect and replicate in bacteria. Because they coevolved with bacteria, they are optimized to kill them. As proof of their endurance, phages are the most common life form on earth, outnumbering bacteria 10 to one. In places like the former Soviet Union, phages have been used to treat bacterial infections for the past hundred years. Harmless to humans, they inject their DNA into bacteria and rapidly replicate, killing their hosts.

"Ever since the discovery of bacteriophages in the early 20th century, scientists have understood that, on the principle of the 'enemy of my enemy is my friend,' medical use could be made of phages to fight viruses," said Dr. Qimron.

Breaking out the little guns

Dr. Qimron and his colleagues set out to understand how all 56 proteins found in T7, a particularly virulent phage that infects Escherichia coli bacteria, contribute to its functioning. They discovered that one of the proteins, called 0.4, impedes cell division in E. coli, causing the cells of the bacteria to elongate and then die. The protein is common to many bacteria and a similar process occurs in all bacteria, so the finding may have wide application.

No bacteriophage preparation has been approved in Western medicine for treating systemic bacterial infections. One reason is their inability to penetrate body tissues effectively. They are filtered effectively from the bloodstream by the spleen and liver, and occasionally neutralized by antibodies. But the 0.4 protein is much smaller than a whole phage, and so should be able to penetrate tissue better, getting to the bacteria to do its deadly work.

The major challenge for pharmaceutical companies will be figuring out how exactly to deliver the protein as a drug, said Dr. Qimron. In the meantime, he continues to hunt for other proteins that kill bacteria.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Kiro, S. Molshanski-Mor, I. Yosef, S. L. Milam, H. P. Erickson, U. Qimron. Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proceedings of the National Academy of Sciences, 2013; 110 (48): 19549 DOI: 10.1073/pnas.1314096110

Cite This Page:

American Friends of Tel Aviv University. "New weapon in war against superbugs." ScienceDaily. ScienceDaily, 2 December 2013. <www.sciencedaily.com/releases/2013/12/131202142743.htm>.
American Friends of Tel Aviv University. (2013, December 2). New weapon in war against superbugs. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/12/131202142743.htm
American Friends of Tel Aviv University. "New weapon in war against superbugs." ScienceDaily. www.sciencedaily.com/releases/2013/12/131202142743.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins