Featured Research

from universities, journals, and other organizations

New understanding of chlamydial disease, host interactions

Date:
December 4, 2013
Source:
University of Maryland School of Medicine
Summary:
Investigators have developed a new technique that can track the activity of a disease-causing microbe and the host cell response to that pathogen simultaneously. Using the new method to examine Chlamydia trachomatis infection, the study team observed how the response of the infected cell contributes to one of the hallmark outcomes of chlamydial disease --tissue scarring.

Investigators at the Institute for Genome Sciences at the University of Maryland School of Medicine have developed a new technique that can track the activity of a disease-causing microbe and the host cell response to that pathogen simultaneously. Using the new method to examine Chlamydia trachomatis infection, the study team observed how the response of the infected cell contributes to one of the hallmark outcomes of chlamydial disease -- tissue scarring. Their findings appear in the December 4 issue of PLOS One.

Related Articles


Chlamydia trachomatis is an intracellular, disease-causing bacterium responsible for the most common human sexually transmitted infections (STIs) and infectious blindness (trachoma) globally. Sexually transmitted chlamydial infections are often asymptomatic, and cause tissue damage and scarring. For example, chlamydial-induced scar tissue within the fallopian tubes can block the tubal opening and lead to infertility. In trachoma, chlamydial scarring of the tissue lining the inside of the eyelids leads to eyelash inversion and direct abrasion of the cornea by the eyelashes, ultimately resulting in the cornea turning opaque.

The central paradox of chlamydial infection is that human immune and cellular responses to the infection contribute to disease. An interdisciplinary team of genome scientists and bioinformatics experts were able to develop an innovative method using new RNA-Seq technology to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells.

"Next generation sequencing technology has advanced so that we can now apply these sophisticated analytical tools to complex bacterial infections of human cells, even at very early points of infections. These early events often set the stage for disease to occur much later," says Garry Myers, Ph.D., Assistant Professor of Microbiology and Immunology at the Institute for Genome Sciences (IGS) at the University of Maryland School of Medicine and senior author on the paper. "We found that the response to chlamydial infection is rapid and dramatic, and observed many novel host cell transcriptional reactions to the infection. In particular, we were able to identify abnormal early expression of host cell genes known to induce scarring, and expression of numerous genes that encode the building blocks of fibrotic scars," said Myers. "It seems that a series of dominos start to fall as soon as Chlamydia infect a cell. Depending on how the individual reacts to that infection, these host responses induce a series of positive feedback loops that ultimately amplify production of the disease-causing scars over time."

In this study, the scientists used depletion of both bacteria and human rRNA to enrich bacterial and human RNA from infected cells for simultaneous sequencing. This next generation deep sequencing method distinguished chlamydial and host expression, yielding a detailed view of both host and pathogen transcription, particularly in the poorly characterized early stages of infection.

"With this simultaneous RNA-Seq approach, we were able to examine how Chlamydia and the infected host cell responded to each other. This gives us significant insight into scarring in chlamydial disease," said Myers. "The RNA-Seq approach pioneered here is also applicable to any bacteria that infect human cells."

"The simultaneous RNA-Seq method developed in this project is likely to be widely used in host/pathogen studies," says Claire M. Fraser, Ph.D., director of the Institute for Genome Sciences and the principal investigator of the National Institutes of Health-funded Genomic Sequencing Center for Infectious Diseases, which conducted this work. "This is a spectacular example of how technology development related to study of a specific pathogen can be leveraged more broadly."

"The marriage between the fields of genomics and bioinformatics provides new tools for basic research scientists to understand how harmful microbes cause disease," says E. Albert Reece, M.D., Ph.D., M.B.A., Vice President for Medical Affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the University of Maryland School of Medicine. "The ability to examine the interactions between the host cells and the pathogen gives investigators a more complete picture of infection and could uncover new therapeutic targets."


Story Source:

The above story is based on materials provided by University of Maryland School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Maryland School of Medicine. "New understanding of chlamydial disease, host interactions." ScienceDaily. ScienceDaily, 4 December 2013. <www.sciencedaily.com/releases/2013/12/131204181238.htm>.
University of Maryland School of Medicine. (2013, December 4). New understanding of chlamydial disease, host interactions. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/12/131204181238.htm
University of Maryland School of Medicine. "New understanding of chlamydial disease, host interactions." ScienceDaily. www.sciencedaily.com/releases/2013/12/131204181238.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins