Featured Research

from universities, journals, and other organizations

New understanding of chlamydial disease, host interactions

Date:
December 4, 2013
Source:
University of Maryland School of Medicine
Summary:
Investigators have developed a new technique that can track the activity of a disease-causing microbe and the host cell response to that pathogen simultaneously. Using the new method to examine Chlamydia trachomatis infection, the study team observed how the response of the infected cell contributes to one of the hallmark outcomes of chlamydial disease --tissue scarring.

Investigators at the Institute for Genome Sciences at the University of Maryland School of Medicine have developed a new technique that can track the activity of a disease-causing microbe and the host cell response to that pathogen simultaneously. Using the new method to examine Chlamydia trachomatis infection, the study team observed how the response of the infected cell contributes to one of the hallmark outcomes of chlamydial disease -- tissue scarring. Their findings appear in the December 4 issue of PLOS One.

Related Articles


Chlamydia trachomatis is an intracellular, disease-causing bacterium responsible for the most common human sexually transmitted infections (STIs) and infectious blindness (trachoma) globally. Sexually transmitted chlamydial infections are often asymptomatic, and cause tissue damage and scarring. For example, chlamydial-induced scar tissue within the fallopian tubes can block the tubal opening and lead to infertility. In trachoma, chlamydial scarring of the tissue lining the inside of the eyelids leads to eyelash inversion and direct abrasion of the cornea by the eyelashes, ultimately resulting in the cornea turning opaque.

The central paradox of chlamydial infection is that human immune and cellular responses to the infection contribute to disease. An interdisciplinary team of genome scientists and bioinformatics experts were able to develop an innovative method using new RNA-Seq technology to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells.

"Next generation sequencing technology has advanced so that we can now apply these sophisticated analytical tools to complex bacterial infections of human cells, even at very early points of infections. These early events often set the stage for disease to occur much later," says Garry Myers, Ph.D., Assistant Professor of Microbiology and Immunology at the Institute for Genome Sciences (IGS) at the University of Maryland School of Medicine and senior author on the paper. "We found that the response to chlamydial infection is rapid and dramatic, and observed many novel host cell transcriptional reactions to the infection. In particular, we were able to identify abnormal early expression of host cell genes known to induce scarring, and expression of numerous genes that encode the building blocks of fibrotic scars," said Myers. "It seems that a series of dominos start to fall as soon as Chlamydia infect a cell. Depending on how the individual reacts to that infection, these host responses induce a series of positive feedback loops that ultimately amplify production of the disease-causing scars over time."

In this study, the scientists used depletion of both bacteria and human rRNA to enrich bacterial and human RNA from infected cells for simultaneous sequencing. This next generation deep sequencing method distinguished chlamydial and host expression, yielding a detailed view of both host and pathogen transcription, particularly in the poorly characterized early stages of infection.

"With this simultaneous RNA-Seq approach, we were able to examine how Chlamydia and the infected host cell responded to each other. This gives us significant insight into scarring in chlamydial disease," said Myers. "The RNA-Seq approach pioneered here is also applicable to any bacteria that infect human cells."

"The simultaneous RNA-Seq method developed in this project is likely to be widely used in host/pathogen studies," says Claire M. Fraser, Ph.D., director of the Institute for Genome Sciences and the principal investigator of the National Institutes of Health-funded Genomic Sequencing Center for Infectious Diseases, which conducted this work. "This is a spectacular example of how technology development related to study of a specific pathogen can be leveraged more broadly."

"The marriage between the fields of genomics and bioinformatics provides new tools for basic research scientists to understand how harmful microbes cause disease," says E. Albert Reece, M.D., Ph.D., M.B.A., Vice President for Medical Affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the University of Maryland School of Medicine. "The ability to examine the interactions between the host cells and the pathogen gives investigators a more complete picture of infection and could uncover new therapeutic targets."


Story Source:

The above story is based on materials provided by University of Maryland School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Maryland School of Medicine. "New understanding of chlamydial disease, host interactions." ScienceDaily. ScienceDaily, 4 December 2013. <www.sciencedaily.com/releases/2013/12/131204181238.htm>.
University of Maryland School of Medicine. (2013, December 4). New understanding of chlamydial disease, host interactions. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/12/131204181238.htm
University of Maryland School of Medicine. "New understanding of chlamydial disease, host interactions." ScienceDaily. www.sciencedaily.com/releases/2013/12/131204181238.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins