Featured Research

from universities, journals, and other organizations

Astronomers solve temperature mystery of planetary atmospheres

Date:
December 10, 2013
Source:
University of Washington
Summary:
An atmospheric peculiarity the Earth shares with Jupiter, Saturn, Uranus and Neptune is likely common to billions of planets, astronomers have found, and knowing that may help in the search for potentially habitable worlds.

The sun is just below the horizon in this photo and creates an orange-red glow above the Earth’s surface, which is the troposphere, or lowest layer of the atmosphere. The tropopause is the brown line along the upper edge of the troposphere. Above both are the stratosphere, higher atmospheric layers, and the blackness of space.
Credit: NASA Johnson Space Center

An atmospheric peculiarity Earth shares with Jupiter, Saturn, Uranus and Neptune is likely common to billions of planets, University of Washington astronomers have found, and knowing that may help in the search for potentially habitable worlds.

First, some history: It's known that air grows colder and thinner with altitude, but in 1902 a scientist named Lιon Teisserenc de Bort, using instrument-equipped balloons, found a point in Earth's atmosphere at about 40,000 to 50,000 feet where the air stops cooling and begins growing warmer.

He called this invisible turnaround a "tropopause," and coined the terms "stratosphere" for the atmosphere above, and "troposphere" for the layer below, where we live -- terms still used today.

Then, in the 1980s, NASA spacecraft discovered that tropopauses are also present in the atmospheres of the planets Jupiter, Saturn, Uranus and Neptune, as well as Saturn's largest moon, Titan. And remarkably, these turnaround points all occur at roughly the same level in the atmosphere of each of these different worlds -- at a pressure of about 0.1 bar, or about one-tenth of the air pressure at Earth's surface.

Now, a paper by UW astronomer Tyler Robinson and planetary scientist David Catling published online Dec. 8 in the journal Nature Geoscience uses basic physics to show why this happens, and suggests that tropopauses are probably common to billions of thick-atmosphere planets and moons throughout the galaxy.

"The explanation lies in the physics of infrared radiation," said Robinson. Atmospheric gases gain energy by absorbing infrared light from the sunlit surface of a rocky planet or from the deeper parts of the atmosphere of a planet like Jupiter, which has no surface.

Using an analytic model, Catling, professor of Earth and space sciences, and Robinson, a postdoctoral researcher in astronomy, show that at high altitudes atmospheres become transparent to thermal radiation due to the low pressure. Above the level where the pressure is about 0.1 bar, the absorption of visible, or ultraviolet, light causes the atmospheres of the giant planets -- and Earth and Titan -- to grow warmer as altitude increases.

The physics, they write, provides a rule of thumb -- that the pressure is around 0.1 bar at the tropopause turnaround -- which should apply to the vast number of planetary atmospheres with stratospheric gases that absorb ultraviolet or visible light.

Astronomers could use the finding to extrapolate temperature and pressure conditions on the surface of planets and work out whether the worlds are potentially habitable -- the key being whether pressure and temperature conditions allow liquid water on the surface of a rocky planet.

"Then we have somewhere we can start to characterize that world," Robinson said. "We know that temperatures are going to increase below the tropopause, and we have some models for how we think those temperatures increase -- so given that leg up, we can start to extrapolate downward toward the surface."

He added, "It's neat that common physics not only explains what's going on in solar system atmospheres, but also might help with the search for life elsewhere." Funding for the research came from the NASA Astrobiology Institute's Virtual Planetary Laboratory.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Peter Kelley. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. D. Robinson, D. C. Catling. Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 2013; DOI: 10.1038/ngeo2020

Cite This Page:

University of Washington. "Astronomers solve temperature mystery of planetary atmospheres." ScienceDaily. ScienceDaily, 10 December 2013. <www.sciencedaily.com/releases/2013/12/131210091134.htm>.
University of Washington. (2013, December 10). Astronomers solve temperature mystery of planetary atmospheres. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/12/131210091134.htm
University of Washington. "Astronomers solve temperature mystery of planetary atmospheres." ScienceDaily. www.sciencedaily.com/releases/2013/12/131210091134.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) — Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins