Featured Research

from universities, journals, and other organizations

More powerful approach to analyze melanoma's genetic causes

Date:
December 11, 2013
Source:
The Geisel School of Medicine at Dartmouth
Summary:
There may be a better way to analyze the genetic causes of cutaneous melanoma according to a study published. A statistical analysis using the natural and orthogonal interaction model showed increased power over existing approaches for detecting genetic effects and interactions when applied to the genome-wide melanoma dataset.

There may be a better way to analyze the genetic causes of cutaneous melanoma (CM) according to a study published in Human Genetics conducted by researchers Yale and Dartmouth. A statistical analysis using the natural and orthogonal interaction (NOIA) model showed increased power over existing approaches for detecting genetic effects and interactions when applied to the genome-wide melanoma dataset.

Related Articles


The gene-gene interactions underlying CM had not been fully explored. The usual functional model uses substitution of alleles for estimating genetic effects but the estimators are confounded. The NOIA model estimates population effects of alleles and the resulting estimators are orthogonal and no longer confounded. In simulation studies, the NOIA model had higher power for finding interactions and main effects than the usual model.

"We confirmed the previously identified significant associated genes HERC2, MC1R, and CDKN2A using a NOIA one-locus statistical model," said Christopher I. Amos, PhD, associate director for Population Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, a corresponding author of the study. "When compared to the usual one-locus model we found that the HERC2 signal was detected more clearly by the NOIA model" The NOIA model also identified an additional potential interaction between the rs1129038 of HERC2 gene and a region at chromosome 5. The SNPs that interact with HERC2 to increase melanoma risk are located in the IL31RA gene, which is involved in STAT3 signaling and upregulated in activated monocytes.

The first author Feifei Xiao, a postdoctoral associate of Yale University, concluded that the power of the NOIA model was better for detecting genetic effects when interactions are tested. When main and interaction effects between two loci were modeled, the usual functional model was less powerful.

CM is highly aggressive and accounts for the majority of deaths from skin cancer. Prior genome-wide association studies have identified multiple genetic factors for the illness, including MC1R, HERC2, and CDKN2A. This study provides new insights for understanding the influence of gene-gene interactions on melanoma risk.

The NOIA framework was developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. The NOIA statistical model can be used for additive, dominant, and recessive genetic models as well as for a binary environmental exposures. It is an easily implemented approach that improves estimation of genetic effects that include interactions.


Story Source:

The above story is based on materials provided by The Geisel School of Medicine at Dartmouth. Note: Materials may be edited for content and length.


Journal Reference:

  1. Feifei Xiao, Jianzhong Ma, Guoshuai Cai, Shenying Fang, Jeffrey E. Lee, Qingyi Wei, Christopher I. Amos. Natural and orthogonal model for estimating gene–gene interactions applied to cutaneous melanoma. Human Genetics, 2013; DOI: 10.1007/s00439-013-1392-2

Cite This Page:

The Geisel School of Medicine at Dartmouth. "More powerful approach to analyze melanoma's genetic causes." ScienceDaily. ScienceDaily, 11 December 2013. <www.sciencedaily.com/releases/2013/12/131211132551.htm>.
The Geisel School of Medicine at Dartmouth. (2013, December 11). More powerful approach to analyze melanoma's genetic causes. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/12/131211132551.htm
The Geisel School of Medicine at Dartmouth. "More powerful approach to analyze melanoma's genetic causes." ScienceDaily. www.sciencedaily.com/releases/2013/12/131211132551.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
How 2014 Shaped The Future Of The Internet

How 2014 Shaped The Future Of The Internet

Newsy (Dec. 18, 2014) It has been a long, busy year for Net Neutrality. The stage is set for an expected landmark FCC decision sometime in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins