Featured Research

from universities, journals, and other organizations

Medications developed for other uses show potential to curb cervical cancer

Date:
December 16, 2013
Source:
Rutgers Biomedical and Health Sciences
Summary:
Two existing drugs – one the active ingredient in an anti-fungal medication and the other now used to control iron levels in the blood – both show promise as potential treatments for cervical cancer, according to newly published research. The same two drugs also showed potential efficacy recently against cells infected with HIV.

Two existing drugs -- one the active ingredient in an anti-fungal medication and the other now used to control iron levels in the blood -- both show promise as potential treatments for cervical cancer, according to newly published research by scientists at Rutgers New Jersey Medical School.

Cervical cancer is the third most common gynecologic cancer in the United States, and takes the life of one of every three women diagnosed with it.

"Cervical cancer still takes a terrible toll, despite advances in prevention, detection and treatment," says Michael Mathews, the senior member of the research team. Their article, whose first author is Elisabeth Mιmin, has been published online by the journal Cancer Research.

"Early stage disease is curable," adds co-author Bernadette Cracchiolo, director of gynecologic oncology at the school, "but late stage and recurrent disease have limited treatment options. We need novel concepts, novel agents that can save lives in those cases, especially for African-American women, whose death rate is twice that of Caucasians. We believe our new research offers those."

The research demonstrates how the two drugs, ciclopirox (anti-fungal) and deferiprone (blood treatment), effectively inhibit an enzyme called deoxyhypusine hydroxylase (DOHH). The enzyme is believed to be essential to the molecular chain of events that leads to cervical cancer.

The researchers performed lab experiments on cells derived from a cervical cancer and found that when DOHH is blocked, a protein known as eIF5A fails to mature. That, in turn, alters the expression of genes that without the medications would cause cancer cells to proliferate. "Some gene products go down and others go up, because mature eIF5A has more than one biochemical action inside cells," Mathews explains. "For cell proliferation, each drug's dual action is like both easing off the accelerator and depressing the brake pedal."

For Mathews and his Rutgers colleague Hartmut Hanauske-Abel, this is the second significant success announced within a matter of weeks involving these two medications. In September, a research team they led published similarly exciting findings in the journal PLOS ONE about HIV -- evidence that the same two drugs eradicated the virus from infected cells examined in lab cultures.

The drugs had two separate effects on HIV. First, both medications prevented the virus from reproducing within cells. Second, by disturbing the function of the mitochondria, the cells' power stations, the drugs caused HIV-infected cells to self-destruct while sparing healthy cells. Once the medications were discontinued, HIV infection did not return. If these promising results are corroborated in clinical trials, they would represent a major advance over current treatments, which patients must take as long as they live. Existing antiretroviral drugs don't eliminate HIV but only inhibit its multiplication. If current cocktails of drugs are discontinued, the disease returns.

So what made Mathews and Hanauske-Abel decide that ciclopirox and deferiprone could act against both HIV and cervical cancer? The key is contained in the two drugs' molecular structures, according to Mathews.

"While ciclopirox and deferiprone were developed for unrelated uses, Hartmut's knowledge of enzymes and pharmacology suggested that both drugs could influence some of the most basic processes that occur within human cells," he says. "We then designed experiments that could help us take advantage of those properties, and our predictions were validated."

An essential aspect of the research team's work with these medications is that both are approved by the Food and Drug Administration for their originally intended uses, which means they are considered safe for use by human patients. Repurposing the medications to treat cervical cancer and HIV creates a potentially huge shortcut to approval if the drugs prove their worth.

"A drug produced from scratch needs to be proven both safe and effective before the FDA will permit its use, and that is a painstaking and expensive process requiring extensive animal experiments," Hanauske-Abel says. "If we start with an existing drug, FDA-approved for an 'old' indication, its safety is already established and the innovation process becomes much shorter."


Story Source:

The above story is based on materials provided by Rutgers Biomedical and Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Memin, M. Hoque, M. R. Jain, D. S. Heller, H. Li, B. Cracchiolo, H. M. Hanauske-Abel, T. Pe'ery, M. B. Mathews. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Research, 2013; DOI: 10.1158/0008-5472.CAN-13-0474

Cite This Page:

Rutgers Biomedical and Health Sciences. "Medications developed for other uses show potential to curb cervical cancer." ScienceDaily. ScienceDaily, 16 December 2013. <www.sciencedaily.com/releases/2013/12/131216102822.htm>.
Rutgers Biomedical and Health Sciences. (2013, December 16). Medications developed for other uses show potential to curb cervical cancer. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/12/131216102822.htm
Rutgers Biomedical and Health Sciences. "Medications developed for other uses show potential to curb cervical cancer." ScienceDaily. www.sciencedaily.com/releases/2013/12/131216102822.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) — The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) — Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins