Featured Research

from universities, journals, and other organizations

Polymer coatings based on molecular structures

Date:
December 18, 2013
Source:
Karlsruhe Institute of Technology
Summary:
A novel method enables manufacturing of polymer layers with tailor-made properties and multiple functions: A stable porous gel for biological and medical applications is obtained from a metal-organic framework grown on a substrate.

Schematic diagram of a metal-organic framework (SURMOF, left), the framework after cross-linking (center), and after copper ions have dissolved out (right).
Credit: Dr. Manuel Tsotsalas/IFG

A novel method developed by researchers from Karlsruhe Institute of Technology (KIT) and Jacobs University Bremen enables manufacturing of polymer layers with tailor-made properties and multiple functions: A stable porous gel (SURGEL) for biological and medical applications is obtained from a metal-organic framework (SURMOF) grown on a substrate.

The method is presented in the Journal of the American Chemical Society.

Coating of solids with polymers plays a central role in many areas of technological, natural and life sciences. For example, implants for the human body e.g., cardiac pacemakers, stents, or joint prostheses, need to be coated with suitable biomaterials and then impregnated with medical agents to accelerate healing-in and suppress inflammations. KIT researchers now have developed a completely novel method for producing a gel from cross-linked organic components. "Compared to conventional polymer coatings, this gel stands out by the fact that the pore size of the layers can be specifically adapted to the bioactive substances e.g., to pharmaceutical agents, to be embedded," explains Professor Christof Wöll, Head of KIT's Institute of Functional Interfaces (IFG).

The gel fabrication method developed by researchers from the KIT Institute of Functional Interfaces (IFG), Institute for Biological Interfaces (ITG), and Institute for Organic Chemistry (IOC) together with the Jacobs University Bremen consists of several steps: First, a layer of a so-called metal-organic framework (MOF) is grown up on a solid substrate. In the obtained SURMOF (SURface-mounted Metal Organic Framework) layer, the size, shape, and chemical functionality of the pores can be tailored, so to speak. The layer itself, however, is not suited for use in biological environments: Its pronounced sensitivity to water causes it to be degraded very rapidly and the copper ions contained in that special type of SURMOF are toxic to living beings.

In view of the above, the molecular components in the SURMOF are cross-linked with another molecule in a second step using the particularly efficient so-called click chemistry method which already at room temperature allows a complete reaction. In a third step, one dissolves out the copper ions from the framework until obtaining the remaining cross-linked organic components that form a porous polymer. This SURGEL provides a uniformly thick layer and combines the advantages of the SURMOF with a high stability under biological conditions.

The potential for biological and medical applications was demonstrated by the researchers by impregnating the SURGEL with a bioactive molecule and then populating it with microbes. The behavior of these simple cells showed that the released messenger molecules were incorporated extremely efficiently. "This new material class opens up entirely new possibilities of influencing cellular growth," says Professor Martin Bastmeyer from KIT's Zoological Institute who together with Professor Wöll heads the program "BioGrenzflächen" (biointerfaces) supported by the Helmholtz Association.

Both implementation of the novel polymer coating and its subsequent biological characterization have been demanding interdisciplinary cooperation of researchers in organic chemistry, biology, and physical chemistry from KIT and theorists from Jacobs University Bremen.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manuel Tsotsalas, Jinxuan Liu, Beatrix Tettmann, Sylvain Grosjean, Artak Shahnas, Zhengbang Wang, Carlos Azucena, Matthew Addicoat, Thomas Heine, Joerg Lahann, Jörg Overhage, Stefan Bräse, Hartmut Gliemann, Christof Wöll. Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal–Organic Frameworks. Journal of the American Chemical Society, 2013; 131217082929006 DOI: 10.1021/ja409205s

Cite This Page:

Karlsruhe Institute of Technology. "Polymer coatings based on molecular structures." ScienceDaily. ScienceDaily, 18 December 2013. <www.sciencedaily.com/releases/2013/12/131218095845.htm>.
Karlsruhe Institute of Technology. (2013, December 18). Polymer coatings based on molecular structures. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/12/131218095845.htm
Karlsruhe Institute of Technology. "Polymer coatings based on molecular structures." ScienceDaily. www.sciencedaily.com/releases/2013/12/131218095845.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) — Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) — 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins