Featured Research

from universities, journals, and other organizations

Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer

Date:
December 19, 2013
Source:
University of Utah Health Sciences
Summary:
Cells with a mutation in the gene called K-Ras —- found in close to 30 percent of all cancers, but mostly those with worst prognosis, such as pancreatic cancer, colon cancer, and lung cancer -— subvert the normal mechanisms of cell death.

“Epithelia act as a skin that coat and protect most organs and are the sites where most solid tumors arise. When cells become too crowded (due to cells dividing), some cells pop out and die. The surprising thing we found in this study is that cells with the K-Ras mutations pop into the tissue and instead live,” said Jody Rosenblatt, PhD.
Credit: University of Utah Health Sciences

Cells with a mutation in the gene called K-Ras—found in close to 30 percent of all cancers, but mostly those with worst prognosis, such as pancreatic cancer, colon cancer, and lung cancer—behave in ways that subvert the normal mechanisms of cell death, according to a cell-culture study by researchers from Huntsman Cancer Institute (HCI) at the University of Utah.

Normal cells need survival signals from the tissue that surrounds them to remain alive. Other research has shown cells with the K-Ras mutation can survive and direct their own fate without these signals.

“Epithelia act as a skin that coat and protect most organs and are the sites where most solid tumors arise. Our previous studies showed that cells making up epithelia turnover at high rates due to mechanical pressure. When cells become too crowded (due to cells dividing), some cells pop out and die. The surprising thing we found in this study is that cells with the K-Ras mutations pop into the tissue and instead live,” said Jody Rosenblatt, PhD, an HCI investigator and associate professor in the Department of Oncological Sciences at the University of Utah who co-authored the study.

The process of popping cells from epithelia is called extrusion, and in normal cells, this leads to cell death to keep the number of cells under control. “Our new study suggests that this oncogene subverts the mechanism of normal cell death to promote invasion.”

Another characteristic of cells with K-Ras mutations is that they consume parts of themselves (a process called autophagy) to keep up with the energy demands of rapid and unchecked cell division that the mutation causes.

“In normal cells that are about to extrude out, large quantities of an important signal called Sphingosine1-Phosphate (S1P) are present. Cells with the K-Ras mutation also produce S1P, but digest it through autophagy, so it cannot do its job and the cells extrude into the tissue,” said Gloria Slattum, doctoral candidate in the Rosenblatt Lab and lead author of the article. “When we blocked autophagy using a common anti-malaria drug called Chloroquine, the cells with K-Ras mutations extruded out of the tissue and died, just as normal cells do.”

The results were published online December 19 in the journal Current Biology.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gloria Slattum, Yapeng Gu, Roger Sabbadini, Jody Rosenblatt. Autophagy in Oncogenic K-Ras Promotes Basal Extrusion of Epithelial Cells by Degrading S1P. Current Biology, 2013; DOI: 10.1016/j.cub.2013.11.029

Cite This Page:

University of Utah Health Sciences. "Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219125955.htm>.
University of Utah Health Sciences. (2013, December 19). Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/12/131219125955.htm
University of Utah Health Sciences. "Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219125955.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins