Featured Research

from universities, journals, and other organizations

New cell mechanism discovery key to stopping breast cancer metastasis

Date:
January 2, 2014
Source:
University of Utah Health Sciences
Summary:
Researchers have discovered a cellular mechanism that drives the spread of breast cancer to other parts of the body (metastasis), as well as a therapy which blocks that mechanism.

Researchers from Huntsman Cancer Institute (HCI) at the University of Utah discovered a cellular mechanism that drives the spread of breast cancer to other parts of the body (metastasis), as well as a therapy which blocks that mechanism. The research results were published online in the journal Cell Reports on January 2.

"Genetic mutations do not drive this mechanism," said Alana Welm, PhD, senior author of the study, associate professor in the Department of Oncological Sciences, and an investigator at Huntsman Cancer Institute. "Instead, it's improper regulation of when genes turn on and off." The new discovery focuses on a protein called RON kinase (RON), which signals some areas of tumor cell DNA to become active. Normally, RON operates mostly during embryonic development and is not highly expressed in healthy adults. But in about 50 percent of breast cancer cases, RON becomes re-expressed and reprograms genes responsible for metastasis, making them active.

"If there's an entire program in the tumor cell that's important for metastasis, blocking one small part of that program, for example, the action of a single gene, will probably not be an effective strategy," said Welm. "But if you could find a way to turn off the entire program, you're more likely to have the desired effect. We found that inhibiting RON turns off the entire metastasis program in these tumor cells.

"No one has ever described a specific pathway driving this kind of reprogramming in metastasis, much less a way to therapeutically block it,' Welm added. "Also, RON has not previously been known to be involved in reprogramming gene expression."

Future work will include investigating the potential of detecting the RON-dependent program in tumor cells as a way to identify patients that are more likely to develop metastases and as a predictor of therapeutic response to drugs that inhibit RON.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stéphanie Cunha, Yi-Chun Lin, Elizabeth A. Goossen, Christa I. DeVette, Mark R. Albertella, Stuart Thomson, Mark J. Mulvihill, Alana L. Welm. The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming. Cell Reports, 2014; DOI: 10.1016/j.celrep.2013.12.010

Cite This Page:

University of Utah Health Sciences. "New cell mechanism discovery key to stopping breast cancer metastasis." ScienceDaily. ScienceDaily, 2 January 2014. <www.sciencedaily.com/releases/2014/01/140102133633.htm>.
University of Utah Health Sciences. (2014, January 2). New cell mechanism discovery key to stopping breast cancer metastasis. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/01/140102133633.htm
University of Utah Health Sciences. "New cell mechanism discovery key to stopping breast cancer metastasis." ScienceDaily. www.sciencedaily.com/releases/2014/01/140102133633.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) — Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) — Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) — California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins