Featured Research

from universities, journals, and other organizations

Research reveals structure of master regulator, new drug target for autism, cervical cancer

Date:
January 9, 2014
Source:
Louisiana State University Health Sciences Center
Summary:
A team of scientists has discovered the structure of the active form of E6-associated protein (E6AP), an enzyme that acts as a master regulator, controlling functions like the ability of nerve cells to "rewire" themselves in response to external stimuli and HPV hijacking cells leading to cervical cancer. They report, for the first time, that the active form of E6AP is composed of three distinct protein molecules.

A team of scientists at LSU Health Sciences Center New Orleans has discovered the structure of the active form of E6-associated protein (E6AP), an enzyme that acts as a master regulator in the body. They report, for the first time, that the active form of E6AP is composed of three distinct protein molecules. E6AP controls functions as diverse as the ability of nerve cells to "rewire" themselves in response to external stimuli and the mechanism by which certain viruses, like human papillomaviruses or HPV, hijack normal cellular processes in order to replicate -- a process that can ultimately lead to cancer. The research will be published in the January 10, 2014, issue of the Journal of Biological Chemistry.

"Because the assembly of cells is like an elaborate tinker toy set in which the parts can be used in different combinations to serve various roles, E6AP normally functions in nerve cells to direct brain development and in a functionally related process termed neuronal plasticity which allows nerve cells to alter their patterns of communication with neighboring cells during learning," notes Arthur Haas, PhD, the Roland Coulson Professor and Chairman of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans and Director of the laboratory in which the work was performed.

The research team included lead investigator Dr. Virginia Ronchi, a postdoctoral fellow, and her colleagues, Jennifer Klein and Dr. Daniel Edwards, all of whom work in Dr. Haas's laboratory at LSU Health Sciences Center New Orleans School of Medicine.

Inherited loss of E6AP function in the brain results in the mild to severe neurodevelopmental defects of Angelman Syndrome which occur in 1 in 10,000-20,000 births. Angelman Syndrome is a developmental condition characterized by severe mental retardation in children because the brain is unable to "learn" by adapting its nerve connections to outside stimuli. In contrast, other types of mutations that lead to increases in brain E6AP activity are thought to cause certain forms of inherited Autism Spectrum Disorder (ASD), suggesting that a carefully orchestrated balance of E6AP function is necessary for normal brain development.

Computer analysis identified a region of the molecule critical for forming the three-part structure, allowing the investigators to create a drug to block the assembly and activity of the enzyme. The computer analysis also demonstrated that several mutations associated with Angelman Syndrome result from defects in assembly of the three protein molecules.

In other studies reported in the paper, Dr. Ronchi and her colleagues show that the replication strategy of two forms of HPV associated with cervical cancer hijacks normal cells, directing them to make a viral protein called E6 that binds to E6AP at the point of assembly and that this feature of the viral protein's function could be used to reverse the molecular assembly defects of the Angelman Syndrome mutations. While not a cure for Angelman Syndrome, this work emphasizes the feasibility of future drug design to promote E6AP assembly as a potential therapy for some forms of the disease. It also provides a target for vaccine and drug development to prevent or treat cervical cancers caused by HPV by derailing cell transformation at the step of E6-E6AP binding.

"The findings of Dr. Ronchi and her colleagues represent a major advance in our understanding of the mechanism of E6AP function and potential strategies for drug design to combat cervical cancer and familial ASD," concludes Dr. Haas. "Since E6AP is but one member of a larger superfamily of 29 related human enzymes, the current findings with E6AP have important implications for the other regulatory pathways within cells."


Story Source:

The above story is based on materials provided by Louisiana State University Health Sciences Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. P. Ronchi, J. M. Klein, D. J. Edwards, A. L. Haas. The Active Form of E6AP/UBE3A Ubiquitin Ligase Is An Oligomer. Journal of Biological Chemistry, 2013; DOI: 10.1074/jbc.M113.517805

Cite This Page:

Louisiana State University Health Sciences Center. "Research reveals structure of master regulator, new drug target for autism, cervical cancer." ScienceDaily. ScienceDaily, 9 January 2014. <www.sciencedaily.com/releases/2014/01/140109143810.htm>.
Louisiana State University Health Sciences Center. (2014, January 9). Research reveals structure of master regulator, new drug target for autism, cervical cancer. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2014/01/140109143810.htm
Louisiana State University Health Sciences Center. "Research reveals structure of master regulator, new drug target for autism, cervical cancer." ScienceDaily. www.sciencedaily.com/releases/2014/01/140109143810.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins