Featured Research

from universities, journals, and other organizations

Potential future data storage at domain boundaries

Date:
January 14, 2014
Source:
Forschungszentrum Juelich
Summary:
Storing more and more in an ever-smaller space -- what sounds impossible is in fact just part of the daily routine in information technology, where for decades, increasing amounts of data have been successfully stored on media with ever higher densities. An international team has now discovered a physical phenomenon that could prove suitable for use in further data aggregation.

Electron microscopic image of an antiferroelectric crystal, with the dark, prominent diagonal lines marking the boundaries. The bar at the bottom left indicates a length of 200 nanometers.
Credit: Forschungszentrum Jülich

Storing more and more in an ever-smaller space -- what sounds impossible is in fact just part of the daily routine in information technology, where for decades, increasing amounts of data have been successfully stored on media with ever higher densities. An international team, including researchers from Forschungszentrum Jülich, has now discovered a physical phenomenon that could prove suitable for use in further data aggregation. They found that domain walls, which separate areas in certain crystalline materials, display a polarization, potentially allowing information to be stored in the tiniest of spaces, thus saving energy. The results of this study have been published in the latest edition of the journal Nature Communications.

Scientists from Forschungszentrum Jülich, Swiss Federal Institute of Technology Lausanne (EPFL), University of Silesia in Katowice, Poland, and Xi'an Jiaotong University in China, have investigated so-called antiferroelectric crystals with the help of the most advanced electron microscopes and computer simulations. These materials possess no electrical polarization and for this reason, seemed up until recently to be of no interest for such applications. The researchers have now discovered that certain areas within these materials do indeed exhibit ferroelectric polar properties.

Ferroelectricity is generated when displacements of positive and negative ions result in the formation of electrical dipoles. The magnitude and orientation of these dipoles, also known as polarization, can be altered using an external electric field and is able to maintain itself without any additional current until it is overwritten. Ferroelectric materials are for this reason already used, for example, to store data on train tickets.

The ferroelectric areas that the researchers have discovered are only around two nanometers thick and could therefore one day be used to store data in a tenth of the space that magnetic materials use. They form the boundaries between identically-structured areas of the otherwise antiferroelectric materials.

"We can imagine these materials as being like three-dimensional patchwork objects made from regularly-arranged building blocks, which are the domains," explains Dr. Xiankui Wei, visiting scientist at the Peter Grünberg Institute and post-doctoral researcher at EPFL. "Within each individual building block, the polarization is absent due to cancellation of oppositely arranged electric dipoles in the basic structure unit. However, the boundaries or 'walls' between domains are polar."

Investigations using atomic resolution electron microscopy, with the help of a technique developed at Forschungszentrum Jülich showed that each wall is uniformly polarized. To change the polarization and write the data, the only requirement is a voltage pulse, as the polarization is then stored until overwritten. As no current is necessary, this uses less energy than magnetic data storage does.

"What is especially exciting in terms of applications is the special arrangement of the walls," reports Prof. Nava Setter of EPFL; under the microscope it is possible to see at relatively low magnification, that the domains are separated from each other by long, parallel walls. The position of the strain-free walls is variable -- upon application of an inhomogeneous electric field, they move either closer together or further apart. The researchers intend to investigate these phenomena in more detail, as the ability to accurately control the mobility and density of the walls are important requirements in terms of technical applications.


Story Source:

The above story is based on materials provided by Forschungszentrum Juelich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder, Chun-Lin Jia, Nava Setter. Ferroelectric translational antiphase boundaries in nonpolar materials. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4031

Cite This Page:

Forschungszentrum Juelich. "Potential future data storage at domain boundaries." ScienceDaily. ScienceDaily, 14 January 2014. <www.sciencedaily.com/releases/2014/01/140114114253.htm>.
Forschungszentrum Juelich. (2014, January 14). Potential future data storage at domain boundaries. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2014/01/140114114253.htm
Forschungszentrum Juelich. "Potential future data storage at domain boundaries." ScienceDaily. www.sciencedaily.com/releases/2014/01/140114114253.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Heartbleed Hack Leads To Arrest

Heartbleed Hack Leads To Arrest

Newsy (Apr. 17, 2014) — A 19-year-old computer science student has been arrested in relation to a data breach of 900 social insurance numbers from Canada's revenue agency. Video provided by Newsy
Powered by NewsLook.com
Apple Rumored To Introduce Song ID Service In Next iOS Build

Apple Rumored To Introduce Song ID Service In Next iOS Build

Newsy (Apr. 17, 2014) — Sources close to Apple told Bloomberg the company plans to introduce an integrated song identification service during the launch of its next iOS. Video provided by Newsy
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Yahoo's Ousted COO Gets $58M Severance Package

Yahoo's Ousted COO Gets $58M Severance Package

Newsy (Apr. 17, 2014) — According to SEC filings, Yahoo gave ousted COO Henrique de Castro a $58 million severance package. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins