Featured Research

from universities, journals, and other organizations

Heart attack damage slashed with microparticle therapy

Date:
January 15, 2014
Source:
Northwestern University
Summary:
After a heart attack, much of the damage to the heart muscle is caused by inflammatory cells that rush to the scene. But that damage is slashed in half when microparticles are injected into the bloodstream within 24 hours of the attack, reports new research. The heart lesion was reduced by 50 percent and the heart could pump significantly more blood as a result of the microparticles. The new therapy has the potential to transform the way heart attacks are treated.

After a heart attack, much of the damage to the heart muscle is caused by inflammatory cells that rush to the scene of the oxygen-starved tissue. But that inflammatory damage is slashed in half when microparticles are injected into the blood stream within 24 hours of the attack, according to new preclinical research from Northwestern Medicineฎ and the University of Sydney in Australia.

When biodegradable microparticles were injected after a heart attack, the size of the heart lesion was reduced by 50 percent and the heart could pump significantly more blood.

"This is the first therapy that specifically targets a key driver of the damage that occurs after a heart attack," said investigator Daniel Getts, a visiting scholar in microbiology-immunology at Northwestern University Feinberg School of Medicine. "There is no other therapy on the horizon that can do this. It has the potential to transform the way heart attacks and cardiovascular disease are treated."

The micoparticles work by binding to the damaging cells -- inflammatory monocytes -- and diverting them to a fatal detour. Instead of racing to the heart, the cells head to the spleen and die.

The particles are made of poly (lactic-co-glycolic) acid, a biocompatible and biodegradable substance already approved by the Food and Drug Administration for use in re-absorbable sutures. A microparticle is 500 nanometers, which is 1/200th size of a hair.

The scientists' study showed the microparticles reduced damage and repaired tissue in many other inflammatory diseases. These include models of West Nile virus, colitis, inflammatory bowel disease, multiple sclerosis, peritonitis and a model that mimics blood flow after a kidney transplant.

"The potential for treating many different diseases is tremendous," said investigator Stephen Miller, the Judy Gugenheim Research Professor at Feinberg. "In all these disease models, the microparticles stop the flood of inflammatory cells at the site of the tissue damage, so the damage is greatly limited and tissues can regenerate."

Getts, Miller and Nicholas King, professor of viral immunopathology at the University of Sydney School of Medical Sciences, are corresponding authors on the paper, which will be published January 15 in Science Translational Medicine.

Biotech Startup Aims for FDA Approval and Clinical Trial

The Northwestern and University of Sydney results are so encouraging, the scientists have partnered with a startup biotechnology company, Cour Pharmaceutical Development Co., to produce a refined version of the microparticles in anticipation of what they hope will be a clinical trial in myocardial infarction (heart attack) within two years. The company plans to submit an investigational new drug application to the FDA.

"This discovery has the potential to transform how inflammatory disorders are treated and the use of microparticles derived from biodegradable polymers means that this therapy could be rapidly translated for clinical use," said John Puisis, the chief executive officer of Cour.

How a Fatal Attraction Saves the Heart

The microparticles are designed to have a negative charge on their surface. This makes them irresistible to the inflammatory monocytes, which have a positively charged receptor. It's a fatal attraction. When the inflammatory cell bonds to the microparticle, a signal on the cell is activated that announces it's dying and ready for disposal. The cell then travels to the spleen, the natural path for the removal of dying cells, rather than going to the site of the inflammation.

"We're very excited," King said. "The potential for this simple approach is quite extraordinary. Inflammatory cells pick up immune-modifying microparticles and are diverted down a natural pathway used by the body to dispose of old cells.

It's amazing that such a simple detour limits major tissue damage in such a wide range of diseases."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. R. Getts, R. L. Terry, M. T. Getts, C. Deffrasnes, M. Muller, C. van Vreden, T. M. Ashhurst, B. Chami, D. McCarthy, H. Wu, J. Ma, A. Martin, L. D. Shae, P. Witting, G. S. Kansas, J. Kuhn, W. Hafezi, I. L. Campbell, D. Reilly, J. Say, L. Brown, M. Y. White, S. J. Cordwell, S. J. Chadban, E. B. Thorp, S. Bao, S. D. Miller, N. J. C. King. Therapeutic Inflammatory Monocyte Modulation Using Immune-Modifying Microparticles. Science Translational Medicine, 2014; 6 (219): 219ra7 DOI: 10.1126/scitranslmed.3007563

Cite This Page:

Northwestern University. "Heart attack damage slashed with microparticle therapy." ScienceDaily. ScienceDaily, 15 January 2014. <www.sciencedaily.com/releases/2014/01/140115143703.htm>.
Northwestern University. (2014, January 15). Heart attack damage slashed with microparticle therapy. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/01/140115143703.htm
Northwestern University. "Heart attack damage slashed with microparticle therapy." ScienceDaily. www.sciencedaily.com/releases/2014/01/140115143703.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins