Featured Research

from universities, journals, and other organizations

Mass important at nano-scale, matters in calculations and measurements

Date:
January 22, 2014
Source:
University of Texas at Arlington
Summary:
An engineering professor has proven that the effect of mass is important, can be measured and has a significant impact on any calculations and measurements at the sub-micrometer scale.

A UT Arlington engineering professor has proven that the effect of mass is important, can be measured and has a significant impact on any calculations and measurements at the sub-micrometer scale.

The findings help to better understand movement of nano-sized objects in fluid environments that can be characterized by a low Reynolds number, which often occurs in biological systems. The unconventional results are consistent with Newton's Second Law of Motion, a well-established law of physics, and imply that mass should be included in the dynamic model of these nano-systems. The most widely accepted models omit mass at that scale.

Alan Bowling, an assistant professor of mechanical and aerospace engineering, collaborated with Samarendra Mohanty, an assistant physics professor, and doctoral students Mahdi Haghshenas-Jaryani, Bryan Black and Sarvenaz Ghaffari, as well as graduate student James Drake to make the discovery.

A key advantage of the new model is that it can be used to build computer simulations of nano-sized objects that have drastically reduced run times as compared to a conventional model based on Newton's second law. These conventional models have run times of days, weeks, months and years while the new model requires only seconds or minutes to run.

In the past, researchers attempted to address the long run time by omitting the mass terms in the model. This resulted in faster run times but, paradoxically, violated Newton's second law upon which the conventional model was based. The remedy for this paradox was to argue that mass was unimportant at the nano-scale.

However, the new model retains mass, and predicts unexpected motion of nano-sized objects in a fluid that has been experimentally observed. The new model also runs much faster than both the conventional and massless models.

It is expected that this new model will significantly accelerate research involving small-scale phenomena.

Research areas that Bowling and collaborators at UT Arlington are currently investigating include cell migration, protein function, bionic medical devices and nanoparticle suspensions for storing thermal energy. However, the applications for the computer simulation in medicine, biology, and other fields are endless.

The research is detailed in the paper "Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation using Multiscale Analysis" and published online by the Journal of Non-Linear Dynamics. The paper is scheduled for publication in the journal's print version later this year.

Khosrow Behbehani, dean of the College of Engineering, said the team's findings may alter ways of thinking throughout the engineering and scientific worlds.

"The paper is only the beginning for this research," Behbehani said. "I anticipate a high level of interest in the findings. It could transform the way we conduct research in nano-engineering by providing researchers with the ability to study such physical phenomena at such small scale through the model."

The team used optical tweezers previously developed by Mohanty to measure oscillations that occur at the nano scale, thus proving that mass and acceleration must be considered at that level as well.

"We proved it in the lab," Bowling said. "Publication in an accepted journal is the next step in gaining mass acceptance of the idea, which flies in the face of what most people believe now."


Story Source:

The above story is based on materials provided by University of Texas at Arlington. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mahdi Haghshenas-Jaryani, Bryan Black, Sarvenaz Ghaffari, James Drake, Alan Bowling, Samarendra Mohanty. Dynamics of microscopic objects in optical tweezers: experimental determination of underdamped regime and numerical simulation using multiscale analysis. Nonlinear Dynamics, 2013; DOI: 10.1007/s11071-013-1185-0

Cite This Page:

University of Texas at Arlington. "Mass important at nano-scale, matters in calculations and measurements." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122104136.htm>.
University of Texas at Arlington. (2014, January 22). Mass important at nano-scale, matters in calculations and measurements. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/01/140122104136.htm
University of Texas at Arlington. "Mass important at nano-scale, matters in calculations and measurements." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122104136.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins