Featured Research

from universities, journals, and other organizations

Scientists offer new insight into neuron changes brought about by aging

Date:
January 22, 2014
Source:
Scripps Research Institute
Summary:
A new study offers insights into how aging affects the brain's neural circuitry, in some cases significantly altering gene expression in single neurons. These discoveries could point the way toward a better understanding of how aging affects our cognitive ability and new therapeutic targets for the treatment of neurodegenerative disease, including Alzheimer's and Parkinson's disease.

How aging affects communication between neurons is not well understood, a gap that makes it more difficult to treat a range of disorders, including Alzheimer's and Parkinson's disease.

A new study from the Florida campus of The Scripps Research Institute (TSRI) offers insights into how aging affects the brain's neural circuitry, in some cases significantly altering gene expression in single neurons. These discoveries could point the way toward a better understanding of how aging affects our cognitive ability and new therapeutic targets for the treatment of neurodegenerative disease.

"Although we don't know exactly why, we do know there is a signaling imbalance as we age, and we've captured these changes at the single neuron level," said Sathyanarayanan V. Puthanveettil, a TSRI assistant professor who led the work. "If we could identify the underpinnings of this mechanism, we may be able to target the specific mechanism to affect or reverse the aging process in human neurons."

To record the electrical and physiological properties of single neurons, the scientists created a new method and applied it to the marine snail Aplysia californica, a widely used animal model. Many Aplysia gene expression signatures have counterparts in the human genome.

Using this methodology, which was published in the Journal of Visualized Experiments, the scientists were then able to focus on neuron R15, a burst firing neuron that is implicated in the regulation of water content and reproduction, showing how its response to the neurotransmitter acetylcholine and gene expression changed with age.

In a study published in the journal PLOS ONE, the team described specific changes in burst firing and action potentials -- which play a central role in cell-to-cell communication -- during the aging of R15, suggesting that changes in the response to acetylcholine during aging has been conserved during evolution in organisms from snails to mammals.

In another study, published in published in BMC Genomics, the team revealed unexpected information about gene expression during R15 aging.

"Aging brings bidirectional changes in the gene expression," said Puthanveettil. "Some gene expression goes up; some goes down. This was surprising, particularly that some gene expression went up -- something you don't necessarily associate with aging."

The study also noted that more than 1,000 DNA sequences are regulated differently in mature versus old R15 neurons. Among the specific biological pathways that are altered are networks involved in: cell signaling and skeletal muscular system development; cell death and survival; cellular function maintenance and embryonic development; and neurological diseases and developmental and hereditary disorders.

To confirm these findings, Puthanveettil and his colleagues also isolated and examined three other Aplysia neurons. Interestingly, while all the neurons showed changes in gene expression with age, these changes weren't necessarily similar among the neurons. Also the magnitude of change was specific to individual neurons.

The scientists are now investigating how and why aging affects neurons differently.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal References:

  1. Komol Akhmedov, Beena M. Kadakkuzha, Sathyanarayanan V. Puthanveettil. Aplysia Ganglia Preparation for Electrophysiological and Molecular Analyses of Single Neurons. Journal of Visualized Experiments, 2014; (83) DOI: 10.3791/51075
  2. Komolitdin Akhmedov, Valerio Rizzo, Beena M. Kadakkuzha, Christopher J. Carter, Neil S. Magoski, Thomas R. Capo, Sathyanarayanan V. Puthanveettil. Decreased Response to Acetylcholine during Aging of Aplysia Neuron R15. PLoS ONE, 2013; 8 (12): e84793 DOI: 10.1371/journal.pone.0084793
  3. Beena M Kadakkuzha, Komolitdin Akhmedov, Tom R Capo, Anthony C Carvalloza, Mohammad Fallahi, Sathyanarayanan V Puthanveettil. Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia. BMC Genomics, 2013; 14 (1): 880 DOI: 10.1186/1471-2164-14-880

Cite This Page:

Scripps Research Institute. "Scientists offer new insight into neuron changes brought about by aging." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122153935.htm>.
Scripps Research Institute. (2014, January 22). Scientists offer new insight into neuron changes brought about by aging. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2014/01/140122153935.htm
Scripps Research Institute. "Scientists offer new insight into neuron changes brought about by aging." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122153935.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins