Featured Research

from universities, journals, and other organizations

Fur and feathers keep animals warm by scattering light

Date:
January 23, 2014
Source:
The Optical Society
Summary:
In work that has major implications for improving the performance of building insulation, scientists have calculated that hairs that reflect infrared light may contribute significant insulating power to the exceptionally warm winter coats of polar bears and other animals.

This image shows the magnified barbules of a white peacock’s feathers, which feature long appendages that diffuse thermal radiation to keep the birds warm.
Credit: Optics Express

In work that has major implications for improving the performance of building insulation, scientists at the University of Namur in Belgium and the University of Hassan I in Morocco have calculated that hairs that reflect infrared light may contribute significant insulating power to the exceptionally warm winter coats of polar bears and other animals.

The research was published today in The Optical Society's (OSA) open-access journal, Optics Express. Biophotonics expert Priscilla Simonis, a researcher at the University of Namur and lead author of the Optics Express paper, was intrigued by the ability of polar bears to insulate their bodies to temperatures of 37 degrees Celsius (98.6 F) even during long, cold winters when outside temperatures are a frigid -40 C (-40 F). The feat was especially impressive given that the bears have a layer of fur that is only 5 centimeters thick.

The insulating power of the animals' coats made Simonis wonder why thermal insulation in buildings doesn't work as well. "Why do we need at least 60 cm of rockwool or glasswool" -- common types of building insulation made from minerals or glass fibers -- "to get a temperature of 20 degrees Celsius inside from about -5 degrees Celsius outside?" she asked. "Why is the polar bear fur much more efficient than what we can develop for our housing?"

Simonis and her team tackled the question by re-examining two of the different ways heat can travel: radiation, which transfers thermal energy through electromagnetic waves, and conduction, which transfers thermal energy through the vibrations of neighboring atoms and molecules. Most people assume that fur and feathers keep animals warm primarily by trapping a layer of air that slows thermal conduction, says Simonis. But she and her colleagues suspected that radiation might play a bigger role.

The scientists performed some initial calculations that showed heat loss between two bodies separated by air would be dominated by radiation, not conduction. To further explore the radiative heat loss the team created a simple computer model consisting of a hot and a cold thermostat that roughly simulated an animal's warm body and the outside, colder environment. The two thermostats were separated by an empty space into which were added "radiative shields" that could mimic individual hairs in a fur coat.

In one version of the model, the researchers incorporated so-called black-body shields, which absorb all of the radiation that strikes them. In a second version, opaque grey-body shields were used. "A grey body has some transmission and reflection as well," Simonis explains.

Simonis and her colleagues found that as the reflectivity of the radiative shields increased, the rate of heat transfer between the hot and cold thermostat was dramatically reduced. Adding more shields also dramatically reduced the energy loss. All together, the model suggests that the repeated backscattering of infrared light between radiative shields, like individual hairs and barbed feathers, could be the primary mechanism for the thermal insulation properties of fur and feathers.

The light scattering properties of animals' coats can also have dual purposes, Simonis notes. With the right structure, fur and feathers can generate efficient thermal insulation in the far infrared range while also scattering visible light to produce a white appearance in the visible wavelength range. "This is particularly useful to animals, such as mammals and birds, that live in snowy areas," Simonis says, as it provides them with both warmth and camouflage against the white snow.

For humans, focusing on ways to minimize radiative heat loss could lead to the development of new types of ultrathin insulation. "The idea is to multiply the interaction of electromagnetic waves with grey bodies -- reflecting bodies, like metals, with very low emissivity and no transparency -- in a very thin material," Simonis says. "It can be done by either a multilayer or a kind of 'fur' optimized for that purpose."


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Priscilla Simonis, Mourad Rattal, El Mostafa Oualim, Azeddine Mouhse, Jean-Pol Vigneron. Radiative contribution to thermal conductance in animal furs and other woolly insulators. Optics Express, 2014; 22 (2): 1940 DOI: 10.1364/OE.22.001940

Cite This Page:

The Optical Society. "Fur and feathers keep animals warm by scattering light." ScienceDaily. ScienceDaily, 23 January 2014. <www.sciencedaily.com/releases/2014/01/140123125834.htm>.
The Optical Society. (2014, January 23). Fur and feathers keep animals warm by scattering light. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/01/140123125834.htm
The Optical Society. "Fur and feathers keep animals warm by scattering light." ScienceDaily. www.sciencedaily.com/releases/2014/01/140123125834.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins