Featured Research

from universities, journals, and other organizations

Swiss cheese crystal, or high-tech sponge?

Date:
January 27, 2014
Source:
University at Buffalo
Summary:
The sponges of the future will do more than clean house. Delivering drugs and trapping gases are all potential applications. That's what chemist Jason Benedict had in mind when he led the design of a new, porous material whose pores change shape in response to ultraviolet light.

Created by chemists at the University at Buffalo and Penn State Hazleton, this sponge-like crystal contains many pores that change shape when exposed to ultraviolet (UV) light. In addition, the normally colorless crystal (left) blushes in the presence of UV light, turning red (right).
Credit: Ian M. Walton

The sponges of the future will do more than clean house.

Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another to trap and store unwanted gases.

These technologies are what University at Buffalo Assistant Professor of Chemistry Jason Benedict, PhD, had in mind when he led the design of a new material called UBMOF-1. The material -- a metal-organic framework, or "MOF" -- is a hole-filled crystal that could act as a sponge, capturing molecules of specific sizes and shapes in its pores.

Swiss cheese-like MOFs are not new, but Benedict's has a couple of remarkable qualities:

The crystal's pores change shape when hit by ultraviolet light. This is important because changing the pore structure is one way to control which compounds can enter or exit the pores. You could, for instance, soak up a chemical and then alter the pore size to prevent it from escaping. Secure storage is useful in applications like drug delivery, where "you don't want the chemicals to come out until they get where they need to be," Benedict says.

The crystal also changes color in response to ultraviolet light, going from colorless to red. This suggests that the material's electronic properties are shifting, which could affect the types of chemical compounds that are attracted into the pores.

Benedict's team reported on the creation of the UBMOF on Jan. 22 in the journal Chemical Communications. The paper's coauthors include chemists from UB and Penn State Hazleton.

"MOFs are like molecular sponges -- they're crystals that have pores," Benedict said.

"Typically, they are these passive materials: They're static. You synthesize them, and that's the end of the road," he added. "What we're trying to do is to take these passive materials and make them active, so that when you apply a stimulus like light, you can make them change their chemical properties, including the shape of their pores."

Benedict is a member of UB's New York State Center of Excellence in Materials Informatics, which the university launched in 2012 to advance the study of new materials that could improve life for future generations.

To force UBMOF-1 respond to ultraviolet light, Benedict and colleagues used some clever synthetic chemistry.

MOF crystals are made from two types of parts -- metal nodes and organic rods -- and the researchers attached a light-responsive chemical group called a diarylethene to the organic component of their material.

Diarylethene is special because it houses a ring of atoms that is normally open but shuts when exposed to ultraviolet light.

In the UBMOF, the diarylethene borders the crystal's pores, which means the pores change shape when the diarylethene does.

The next step in the research is to determine how, exactly, the structure of the holes is changing, and to see if there's a way to get the holes to revert to their original shape.

Rods containing diarylethene can be forced back into the "open" configuration with white light, but this tactic only works when the rods are alone. Once they're inserted into the crystal, the diarylethene rings stay stubbornly closed in the presence of white light.


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Charlotte Hsu. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dinesh (Dan) G. Patel, Ian M. Walton, Jordan Cox, Cody J Gleason, David R Butzer, Jason Benedict. Photoresponsive Porous Materials: The Design and Synthesis of Photochromic Diarylethene-based Linkers and a Metal-organic Framework. Chemical Communications, 2014; DOI: 10.1039/C3CC49666J

Cite This Page:

University at Buffalo. "Swiss cheese crystal, or high-tech sponge?." ScienceDaily. ScienceDaily, 27 January 2014. <www.sciencedaily.com/releases/2014/01/140127112335.htm>.
University at Buffalo. (2014, January 27). Swiss cheese crystal, or high-tech sponge?. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2014/01/140127112335.htm
University at Buffalo. "Swiss cheese crystal, or high-tech sponge?." ScienceDaily. www.sciencedaily.com/releases/2014/01/140127112335.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins