Featured Research

from universities, journals, and other organizations

Silk coat for diamonds makes sleek new imaging, drug delivery tool

Date:
January 27, 2014
Source:
The Optical Society
Summary:
Silk and diamonds aren't just for ties and jewelry anymore. They're ingredients for a new kind of tiny glowing particle that could provide doctors and researchers with a novel technique for biological imaging and drug delivery. A team of researchers describes this new hybrid diamond-silk material in a paper published.

Illustration of nanodiamonds seeded on a marked silicon substrate and coated with silk film.
Credit: Asma Khalid

Silk and diamonds aren't just for ties and jewelry anymore. They're ingredients for a new kind of tiny glowing particle that could provide doctors and researchers with a novel technique for biological imaging and drug delivery.

The new particles, just tens of nanometers across, are made of diamond and covered in silk. They can be injected into living cells, and because they glow when illuminated with certain kinds of light, biologists can use them to peer inside cells and untangle the molecular circuitry that governs cellular behavior, or to study how cells react to a new drug. The silk-coated diamond particles could also potentially be used someday in the clinic, by allowing doctors to send infection-fighting antibiotics to a targeted area of the body.

A team of researchers from Australia and the United States describes this new hybrid diamond-silk material in a paper published today in The Optical Society's (OSA) journal Biomedical Optics Express.

Nanodiamonds similar to those in this study have been explored previously for their potential medical uses, but this is the first time silk has been incorporated with nanodiamonds, said Asma Khalid of the University of Melbourne, who is the first author of the Biomedical Optics Express paper. "This nanodiamond-silk hybrid material is important due to the potential it offers to the fields of bioimaging, biosensing and drug delivery," she explained.

Diamonds are crystals of carbon. But they can be made with defects -- other atoms inserted in the crystal structure -- and these defects allow them to do tricks that flawless diamonds can't, such as absorbing and reemitting light of certain wavelengths, a process called fluorescence. Because these fluorescent nanodiamonds are bright, stable, and harmless to living tissue -- and can work at room temperature -- researchers have been exploring their use in biological imaging and sensing. But the edges around the particles tend to be rough and may cause the nanodiamonds to become trapped inside cell membranes.

Previously, other researchers have addressed this problem by coating the particles with lipids, a class of molecules found in fats and waxes. According to the new study, however, a better solution is to cover the nanodiamonds in silk, which is transparent, flexible, compatible with biological tissue, and biodegradable, so it won't leave any harmful byproducts inside the body.

When the researchers tested their new hybrid material, they found that the silk remains transparent, meaning that it does not block the glow of the nanodiamonds. They also discovered that the silk not only preserves the optical properties of the nanodiamonds, but it enhances their brightness by two to four times. Finally, the new material appears to be safe for use in the body: it left no damaging effects even after spending two weeks implanted inside living tissue, suggesting that it is nontoxic and non-inflammatory, the researchers say.

In the future, the team envisions a range of nanodiamond-silk structures that could help researchers improve techniques for fighting infections in targeted areas of the body. A thin film of the new substance, carrying drugs, could be implanted directly into an infected area, minimizing the patient's exposure to the drugs. Silk can also be designed to degrade at a certain rate, which would allow clinicians to control the release of medications.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Asma Khalid, Rebecca Lodin, Peter Domachuk, Hu Tao, Jodie E. Moreau, David L. Kaplan, Fiorenzo G. Omenetto, Brant C. Gibson, Snjezana Tomljenovic-Hanic. Synthesis and characterization of biocompatible nanodiamond-silk hybrid material. Biomedical Optics Express, 2014; 5 (2): 596 DOI: 10.1364/BOE.5.000596

Cite This Page:

The Optical Society. "Silk coat for diamonds makes sleek new imaging, drug delivery tool." ScienceDaily. ScienceDaily, 27 January 2014. <www.sciencedaily.com/releases/2014/01/140127112756.htm>.
The Optical Society. (2014, January 27). Silk coat for diamonds makes sleek new imaging, drug delivery tool. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/01/140127112756.htm
The Optical Society. "Silk coat for diamonds makes sleek new imaging, drug delivery tool." ScienceDaily. www.sciencedaily.com/releases/2014/01/140127112756.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins