Featured Research

from universities, journals, and other organizations

Critical protein discovered for healthy cell growth in mammals

Date:
January 27, 2014
Source:
Penn State
Summary:
A protein that is required for the growth of tiny, but critical, hair-like structures called cilia on cell surfaces has been discovered. The research has important implications for human health because lack of cilia can lead to serious diseases such as polycystic kidney disease, blindness and neurological disorders.

A team of researchers from Penn State University and the University of California has discovered a protein that is required for the growth of tiny, but critical, hair-like structures called cilia on cell surfaces. The discovery has important implications for human health because lack of cilia can lead to serious diseases such as polycystic kidney disease, blindness and neurological disorders.

Related Articles


"If we want to better understand and treat diseases related to cilium development, we need to identify important regulators of cilium growth and learn how those regulators function," said co-author Aimin Liu, associate professor of biology at Penn State. "This work gives us significant insight into one of the earliest steps in cilium formation."

The researchers describe their findings in a paper that will be published online in the Proceedings of the National Academy of Sciences during the week of 27 January 2014. In addition to Liu, authors include Penn State cellular biologists Xuan Ye, Huiqing Zeng and Gang Ning, as well as Jeremy F. Reiter, a biophysicist at the University of California -- San Francisco.

Cilia, which are present on the surface of almost all mammalian cells, are responsible for sending, receiving, and processing information within the body. "You could think of cilia as the cells' antennae," Liu said. "Without cilia, the cells can't sense what's going on around them, and they can't communicate." Cilia also perform important filtering and cleansing functions. For example, cilia inside the trachea, or windpipe, trap and prevent bacteria from entering the lungs.

In a previous study, Liu and his colleagues learned that a protein called C2cd3 is important for cilium formation because mice that lacked this protein exhibited severe developmental problems typically associated with the lack of cilia. "At the time we knew only that if we get rid of the protein, the cells in the animal would not grow cilia," Liu said. "We didn't understand why, but now we do."

A cilium grows from a centriole, a structure that clings to the inner surface of the cell and serves as an anchor for the cilium. Before a cell can grow a cilium, it needs to assemble a set of appendages at one end of the centriole. These appendages can then connect the centriole to the cell surface, allowing the outgrowth of a cilium. Just how these appendages are assembled, though, remained a mystery for more than four decades since their discovery in 1962. Liu and his colleagues found that appendages were not assembled at the end of the centriole when the C2cd3 protein is not present. As a result, the centriole is not associated with the cell membrane and cannot recruit other proteins for the further growth of the cilium. "So our protein is required for the very first step of putting a cilium together," Liu explained. "Without those appendages, the cilium growth cannot happen."

The researchers hope their discovery will lead to greater knowledge of the process of cilium development and, eventually, to treatments for a wide range of health problems that fall under the label of ciliopathy. "Ciliopathy is a scientific term that covers a lot of diseases," Liu said. As well as contributing to cystic disorders in the kidney and liver, lack of cilia can lead to blindness or deafness, since cilia in the retina serve as receptors that process light stimulation and cilia within the ear are required in neurons that translate sound waves into neural signals.


Story Source:

The above story is based on materials provided by Penn State. The original article was written by Krista Weidner. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xuan Ye, Huiqing Zeng, Gang Ning, Jeremy F. Reiter, and Aimin Liu. C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. PNAS, January 2014

Cite This Page:

Penn State. "Critical protein discovered for healthy cell growth in mammals." ScienceDaily. ScienceDaily, 27 January 2014. <www.sciencedaily.com/releases/2014/01/140127164833.htm>.
Penn State. (2014, January 27). Critical protein discovered for healthy cell growth in mammals. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2014/01/140127164833.htm
Penn State. "Critical protein discovered for healthy cell growth in mammals." ScienceDaily. www.sciencedaily.com/releases/2014/01/140127164833.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins