Featured Research

from universities, journals, and other organizations

Chemical products on a renewable basis

Date:
February 3, 2014
Source:
Karlsruhe Institute of Technology
Summary:
A breakthrough in the use of renewable raw materials in chemical production has been achieved -- production of 5-(hydroxymethyl)furfural. Scientists have developed an innovative hydrothermal method to obtain the organic compound from biomass. Being a platform chemical, 5-HMF can serve as a precursor for various materials.

At this facility, AVA Biochem produces 5-(hydroxymethyl)furfural from biomass. The compound can serve as a precursor for various materials.
Credit: AVA Biochem

A breakthrough in the use of renewable raw materials in chemical production has been achieved by Karlsruhe Institute of Technology (KIT) and its industrial partner AVA Biochem: In January this year, a facility at AVA Biochem in Muttenz (Switzerland) has started production of 5-(hydroxymethyl)furfural. The KIT has developed an innovative hydrothermal method to obtain the organic compound from biomass. Being a platform chemical, 5-HMF can serve as a precursor for various materials.

Today, the chemical industry mainly uses fossil raw materials such as crude oil and natural gas. From these materials, so-called basic chemicals or platform chemicals serving as precursors for various industrial products such as plastics or substances for coatings, paints, and varnishes are manufactured. However, in view of today's limited resources, the climate change, and our quest for sustainable development, the interest in renewable raw materials that can replace crude oil increases. The platform chemical 5-(hydroxymethyl)furfural (5-HMF) plays a key role in the change from a crude-oil-based to biomass-based chemistry.

5-HMF is an organic compound that forms during thermal decomposition of carbohydrates and can thus be detected in many heat-treated foods such as milk, fruit juice, honey or coffee. Heating sugar in a pan, we can, for example, smell the compound as the sugar caramelizes. 5-HMF can be obtained from vegetable biomass and can serve in the future as a precursor for different innovative materials, in particular for polymers with specific properties. According to the U.S. Department of Energy, 5-HMF is one of the ten most important platform chemicals. It is, however, a challenge to manufacture the compound on an industrial scale. Karlsruhe Institute of Technology and the Swiss AVA Biochem BSL AG now achieved a significant scientific-technical breakthrough: In January this year, the facility "Biochem 1" operated by AVA Biochem in Muttenz near Basel started commercial operation for industrial manufacture of 5-HMF. The manufacturing method was developed by researchers from KIT.

Cooperation with AVA Biochem is part of comprehensive KIT activities for manufacture of chemical energy carriers as well as intermediates from biomass with emphasis on so-called hydrothermal methods i.e. reactions in water at increased temperatures. "The hydrothermal methods can be well integrated in different process chains for which biomass is used as raw material," explains Professor Jörg Sauer, head of KIT's Institute of Catalysis Research and Technology (IKFT). "On the one hand, biomass with a high water content which, for example, is a by-product of food production, serves as raw material. On the other hand, hydrothermal procedures can be combined very well with biotechnological methods.

Within 18 months, the researchers at KIT developed a 5-(hydroxymethyl)furfural laboratory production technique that can be implemented in the industry. Hydrothermal carbonization i.e., a method which at high temperatures and increased pressure converts biomass in a closed system in aqueous suspension into biochar, served as the basis. Unlike hydrothermal carbonization, the new method, however, prevents formation of a solid. The fragments from the biomass are converted into chemical components, for example for plastics manufacture.

"Within the short time of only 18 months, our team had to develop a solution to be scaled up from the laboratory to an industrial scale," says Professor Andrea Kruse from KIT. "Thanks to our more than twenty years' experience in hydrothermal methods, we have succeeded in mastering this great challenge." Together with engineers from AVA Biochem, the KIT researchers, parallel to the laboratory experiments, started at an early stage to work on upscaling to the production scale. Already since 2010, KIT and AVA-CO2, the holding company of AVA Biochem, had researched into hydrothermal carbonization and put it to industrial application. This was also to the benefit of the development of the new method. "The close cooperation between researchers and plant engineers has enabled a rapid industrialization. We are several years ahead of the market," sums up Jan Vyskocil, CEO at AVA Biochem.

In parallel to current production, the teams at KIT and AVA Biochem now optimize the method and prepare it for further applications. Both the spectrum of usable biomasses and the achievable yields have much development potential and open up additional opportunities. A joint patent was taken out on the developed method. There is lively interest now already in different branches of the industry. Orders have already been received.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Karlsruhe Institute of Technology. "Chemical products on a renewable basis." ScienceDaily. ScienceDaily, 3 February 2014. <www.sciencedaily.com/releases/2014/02/140203084016.htm>.
Karlsruhe Institute of Technology. (2014, February 3). Chemical products on a renewable basis. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/02/140203084016.htm
Karlsruhe Institute of Technology. "Chemical products on a renewable basis." ScienceDaily. www.sciencedaily.com/releases/2014/02/140203084016.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) — Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) — A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) — The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins