Featured Research

from universities, journals, and other organizations

Why diabetes patients are at risk for microvascular complications

Date:
February 4, 2014
Source:
Beth Israel Deaconess Medical Center
Summary:
Patients with diabetes are at increased risk of microvascular complications, which develop when the body’s small blood vessels become diseased. One of the most common problems results when wounds fail to heal properly, which can lead to ulcers, chronic infections, and in the most serious cases, limb amputations. Now researchers have discovered that a molecule called PGC-1alpha -- which has previously been shown to spur the growth of blood vessels in muscle -- has the opposite effect in the endothelial cells of patients with diabetes, impairing blood vessel growth and leading to dangerous vascular complications.

Patients with diabetes are at increased risk of microvascular complications, which develop when the body’s small blood vessels become diseased. One of the most common problems results when wounds fail to heal properly, which can lead to ulcers, chronic infections, and in the most serious cases, limb amputations.

Now investigators from Beth Israel Deaconess Medical Center (BIDMC) have discovered that a molecule called PGC-1alpha -- which has previously been shown to spur the growth of blood vessels in muscle -- has the opposite effect in the endothelial cells of patients with diabetes, impairing blood vessel growth and leading to dangerous vascular complications.

Reported on-line today in the journal Cell Metabolism, the new findings not only help explain the molecular mechanisms underlying microvascular disease in diabetes patients, they also suggest that because PGC-1alpha has opposing effects in different cell types, its role as a potential new therapeutic target should be pursued with caution.

“Diabetes is the number one cause of amputations in the U.S.,” explains senior author Zoltan Arany, MD, PhD, an investigator in BIDMC’s CardioVascular Institute and Associate Professor of Medicine at Harvard Medical School (HMS). “While it’s been believed that high levels of glucose were somehow to blame for the inability of chronic ulcers and infections to properly heal in these patients, it wasn’t completely understood how this was happening.”

With this new research, says Arany, it is apparent that high levels of blood glucose -- the hallmark of diabetes -- induces high levels of the PGC-1 alpha molecule in the endothelial cells lining the blood vessels. This, in turn, prevents endothelial cells from properly functioning, inhibiting blood vessel growth.

Arany’s laboratory has studied PGC-1 alpha for more than a decade. Among the molecule’s diverse roles, he has discovered that when body parts are jeopardized by poor circulation, PGC-1 alpha senses dangerously low levels of oxygen and nutrients in muscle cells and, in response, spurs the growth of new blood vessels, a process known as angiogenesis.

“In muscle cells, we’ve found that PGC-1alpha is pro-metabolic, and a critical regulator of angiogenesis,” he explains. “But the key cells responsible for carrying out angiogenesis are the endothelial cells that line the blood vessels. We, therefore, decided to investigate the role of endothelial PGC-1 alpha in diabetes.”

Through a series of cell culture experiments, as well as experiments in endothelial-specific genetic mouse models, the authors showed that PGC-1alpha in endothelial cells is induced by diabetes, which strongly inhibits endothelial migration and angiogenesis, and leads to vascular dysfunction.

“These findings were definitely surprising, because the effects of PGC-1 alpha in endothelial cells are the opposite of its effects in muscle cells,” notes Arany. “In muscle cells, it’s pro-metabolic and will call forth more blood vessels and come to the rescue when an injury or artery blockage leaves normal tissue starved for blood.” But, he adds, it’s now clear that this molecule behaves quite differently in endothelial cells, preventing blood vessel growth in diabetes patients and preventing wounds from healing.

“This isn’t just interesting and paradoxical, it’s a potentially very important finding that reminds us that the same molecule can do different things in different cell types,” adds Arany, explaining that if you make a medication that targets a particular pathway, it could potentially have positive effects in one tissue or cell type, but negative effects in another.

“PGC-1 alpha is generally considered a ‘good’ molecule in terms of improving health when it’s activated,” he adds. “But as these findings show, this isn’t the case in the vasculature – activation leads to potentially serious problems. This striking observation stresses the need for caution, for example, when designing drugs aimed at PGC-1 alpha.”


Story Source:

The above story is based on materials provided by Beth Israel Deaconess Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Naoki Sawada, Aihua Jiang, Fumihiko Takizawa, Adeel Safdar, Andre Manika, Yevgenia Tesmenitsky, Kyu-Tae Kang, Joyce Bischoff, Hermann Kalwa, JulianoL. Sartoretto, Yasutomi Kamei, LauraE. Benjamin, Hirotaka Watada, Yoshihiro Ogawa, Yasutomi Higashikuni, ChaseW. Kessinger, FaroucA. Jaffer, Thomas Michel, Masataka Sata, Kevin Croce, Rica Tanaka, Zolt Arany. Endothelial PGC-1α Mediates Vascular Dysfunction in Diabetes. Cell Metabolism, 2014; 19 (2): 246 DOI: 10.1016/j.cmet.2013.12.014

Cite This Page:

Beth Israel Deaconess Medical Center. "Why diabetes patients are at risk for microvascular complications." ScienceDaily. ScienceDaily, 4 February 2014. <www.sciencedaily.com/releases/2014/02/140204123448.htm>.
Beth Israel Deaconess Medical Center. (2014, February 4). Why diabetes patients are at risk for microvascular complications. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2014/02/140204123448.htm
Beth Israel Deaconess Medical Center. "Why diabetes patients are at risk for microvascular complications." ScienceDaily. www.sciencedaily.com/releases/2014/02/140204123448.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Catching More Than Fish: Ugandan Town Crippled by AIDS

Catching More Than Fish: Ugandan Town Crippled by AIDS

AFP (Apr. 22, 2014) The village of Kasensero on the shores of Lake Victoria was where HIV-AIDS was first discovered in Uganda. Its transient population of fishermen and sex workers means the nationwide programme to combat the virus has had little impact. Duration: 02:30 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins