Featured Research

from universities, journals, and other organizations

Large thermoelectric power from a combination of magnets and superconductors

Date:
February 7, 2014
Source:
Suomen Akatemia (Academy of Finland)
Summary:
Thermoelectric devices can cool materials by passing currents, or convert temperature differences into electric power. However, especially metallic structures have a very poor thermoelectric performance, and therefore most thermoelectrics are made of semiconductors. Now researchers have shown how a proper combination of magnetic metals and superconductors could allow reaching very strong thermoelectric conversion efficiency.

According to the newly published research, a very large thermoelectric effect can be created in a structure combining a ferromagnet (F) to a thin superconductor film (S) via an insulator (I), and where the superconductor is in the presence of a spin-splitting field due to the presence of a ferromagnetic insulator (FI) or a magnetic field (B).
Credit: Courtesy Academy of Finland

Thermoelectric devices can cool materials by passing currents, or convert temperature differences into electric power. However, especially metallic structures have a very poor thermoelectric performance, and therefore most thermoelectrics are made of semiconductors. Now a group of researchers from the University of Jyväskylä, Aalto University (Finland), San Sebastian (Spain) and Oldenburg University (Germany) have shown how a proper combination of magnetic metals and superconductors could allow reaching very strong thermoelectric conversion efficiency.

The electronic structure of semiconductors and superconductors looks superficially similar, because both contain an "energy gap," a region of energies forbidden for the electrons. The difference between the two is that doping semiconductors allows moving this energy gap with respect to the average electron energy. This is in contrast to superconductors, where the energy gap is symmetric with respect to positive and negative energies, and therefore the thermoelectric effect from positive energy electrons cancels the effect from the negative energy electrons. In the work published yesterday Heikkilä and the international research group showed how this symmetry can be broken by the presence of an extra magnetic field, and driving the electric current through a magnetic contact. As a result, the system exhibits a very large thermoelectric effect.

Because conventional superconductors require temperatures of the order of a few Kelvin, this mechanism cannot be used directly in consumer devices such as portable coolers or waste heat converters. However, it could be used in accurate signal detection, or a similar mechanism could be applied in semiconductors to improve their thermoelectric performance.

Converting heat to electricity or vice versa

Thermoelectric effects were found already in the 1830's, when the Estonian scientist Thomas Johann Seebeck observed a voltage caused by a temperature difference, and a French physicist Jean Charles Athanase Peltier discovered the reciprocal effect, capable of converting electric current to temperature differences. These phenomena have been used in many applications ranging from thermometry to cooling car seats and as power sources for space missions. The efficiency of such devices is typically quite low. If it could be improved, the thermoelectric conversion would be immediately taken into use to convert the waste heat in industrial processes or for example car engines into useful electricity.

Some metals turn at low temperatures to superconductors, losing entirely their electrical resistance. It was long believed that superconductors exhibit no thermoelectric effects. However, in his Nobel lecture 2003, Vitaly Ginsburg described the topic as poorly understood. The new research brings insight into this question and allows studying phenomena in more complicated hybrid structures.


Story Source:

The above story is based on materials provided by Suomen Akatemia (Academy of Finland). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Ozaeta, P. Virtanen, F. S. Bergeret, ja T. T. Heikkil. Predicted Very Large Thermoelectric Effect in Ferromagnet-Superconductor Junctions in the Presence of a Spin-Splitting Magnetic Field. Phys. Rev. Lett., 2014 DOI: 10.1103/PhysRevLett.112.057001

Cite This Page:

Suomen Akatemia (Academy of Finland). "Large thermoelectric power from a combination of magnets and superconductors." ScienceDaily. ScienceDaily, 7 February 2014. <www.sciencedaily.com/releases/2014/02/140207083738.htm>.
Suomen Akatemia (Academy of Finland). (2014, February 7). Large thermoelectric power from a combination of magnets and superconductors. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/02/140207083738.htm
Suomen Akatemia (Academy of Finland). "Large thermoelectric power from a combination of magnets and superconductors." ScienceDaily. www.sciencedaily.com/releases/2014/02/140207083738.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins