Featured Research

from universities, journals, and other organizations

Pacific trade winds stall global surface warming ... for now

Date:
February 9, 2014
Source:
University of New South Wales
Summary:
Heat stored in the western Pacific Ocean caused by an unprecedented strengthening of the equatorial trade winds appears to be largely responsible for the hiatus in surface warming observed over the past 13 years. The strongest trade winds have driven more of the heat from global warming into the oceans; but when those winds slow, that heat will rapidly return to the atmosphere causing an abrupt rise in global average temperatures, scientists say.

This is a schematic of the trends in temperature and ocean-atmosphere circulation in the Pacific over the past two decades. Color shading shows observed temperature trends ( C per decade) during 1992-2011 at the sea surface (Northern Hemisphere only), zonally averaged in the latitude-depth sense (as per Supplementary Fig. 6) and along the equatorial Pacific in the longitude-depth plane (averaged between 5 N S). Peak warming in the western Pacific thermocline is 2.0 C per decade in the reanalysis data and 2.2 C per decade in the model. The mean and anomalous circulation in the Pacific Ocean is shown by bold and thin arrows, respectively, indicating an overall acceleration of the Pacific Ocean shallow overturning cells, the equatorial surface currents and the Equatorial Undercurrent (EUC). The accelerated atmospheric circulation in the Pacific is indicated by the dashed arrows; including theWalker cell (black dashed) and the Hadley cell (red dashed; Northern Hemisphere only). Anomalously high SLP in the North Pacific is indicated by the symbol "H." An equivalent accelerated Hadley cell in the Southern Hemisphere is omitted for clarity.
Credit: Nature Climate Change

The strongest trade winds have driven more of the heat from global warming into the oceans. But when those winds slow, that heat will rapidly return to the atmosphere causing an abrupt rise in global average temperatures, researchers report.

Heat stored in the western Pacific Ocean caused by an unprecedented strengthening of the equatorial trade winds appears to be largely responsible for the hiatus in surface warming observed over the past 13 years.

New research published today in the journal Nature Climate Change indicates that the dramatic acceleration in winds has invigorated the circulation of the Pacific Ocean, causing more heat to be taken out of the atmosphere and transferred into the subsurface ocean, while bringing cooler waters to the surface.

"Scientists have long suspected that extra ocean heat uptake has slowed the rise of global average temperatures, but the mechanism behind the hiatus remained unclear" said Professor Matthew England, lead author of the study and a Chief Investigator at the ARC Centre of Excellence for Climate System Science.

"But the heat uptake is by no means permanent: when the trade wind strength returns to normal -- as it inevitably will -- our research suggests heat will quickly accumulate in the atmosphere. So global temperatures look set to rise rapidly out of the hiatus, returning to the levels projected within as little as a decade."

The strengthening of the Pacific trade winds began during the 1990s and continues today. Previously, no climate models have incorporated a trade wind strengthening of the magnitude observed, and these models failed to capture the hiatus in warming. Once the trade winds were added by the researchers, the global average temperatures very closely resembled the observations during the hiatus.

"The winds lead to extra ocean heat uptake, which stalled warming of the atmosphere. Accounting for this wind intensification in model projections produces a hiatus in global warming that is in striking agreement with observations," Prof England said.

"Unfortunately, however, when the hiatus ends, global warming looks set to be rapid."

The impact of the trade winds on global average temperatures is caused by the winds forcing heat to accumulate below surface of the Western Pacific Ocean.

"This pumping of heat into the ocean is not very deep, however, and once the winds abate, heat is returned rapidly to the atmosphere" England explains.

"Climate scientists have long understood that global average temperatures don't rise in a continual upward trajectory, instead warming in a series of abrupt steps in between periods with more-or-less steady temperatures. Our work helps explain how this occurs," said Prof England.

"We should be very clear: the current hiatus offers no comfort -- we are just seeing another pause in warming before the next inevitable rise in global temperatures."


Story Source:

The above story is based on materials provided by University of New South Wales. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew H. England, Shayne McGregor, Paul Spence, Gerald A. Meehl, Axel Timmermann, Wenju Cai, Alex Sen Gupta, Michael J. McPhaden, Ariaan Purich, Agus Santoso. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 2014; DOI: 10.1038/nclimate2106

Cite This Page:

University of New South Wales. "Pacific trade winds stall global surface warming ... for now." ScienceDaily. ScienceDaily, 9 February 2014. <www.sciencedaily.com/releases/2014/02/140209152454.htm>.
University of New South Wales. (2014, February 9). Pacific trade winds stall global surface warming ... for now. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/02/140209152454.htm
University of New South Wales. "Pacific trade winds stall global surface warming ... for now." ScienceDaily. www.sciencedaily.com/releases/2014/02/140209152454.htm (accessed September 18, 2014).

Share This



More Earth & Climate News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) — Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins