Featured Research

from universities, journals, and other organizations

Chips that listen to bacteria: CMOS technology provides new insights into how biofilms form

Date:
February 10, 2014
Source:
Columbia University School of Engineering and Applied Science
Summary:
Researchers have shown integrated circuit technology can be used for a most unusual application -- the study of signaling in bacterial colonies. They have developed a chip based on CMOS technology that enables them to electrochemically image the signaling molecules from these colonies spatially and temporally -- they’ve developed chips that “listen” to bacteria.

The development of colony biofilms by Pseudomonas aeruginosa is affected by redox-active compounds called phenazines. A phenazine-null mutant forms a hyperwrinkled colony with prominent spokes, while wild-type colonies are more constrained and smooth.
Credit: Hassan Sakhtah, Columbia University

In a study published today in Nature Communications, a research team led by Ken Shepard, professor of electrical engineering and biomedical engineering at Columbia Engineering, and Lars Dietrich, assistant professor of biological sciences at Columbia University, has demonstrated that integrated circuit technology, the basis of modern computers and communications devices, can be used for a most unusual application -- the study of signaling in bacterial colonies. They have developed a chip based on complementary metal-oxide-semiconductor (CMOS) technology that enables them to electrochemically image the signaling molecules from these colonies spatially and temporally. In effect, they have developed chips that "listen" to bacteria.

"This is an exciting new application for CMOS technology that will provide new insights into how biofilms form," says Shepard. "Disrupting biofilm formation has important implications in public health in reducing infection rates."

The researchers, who include PhD students Dan Bellin (electrical engineering) and Hassan Sakhtah (biology), say that this is the first time integrated circuits have been used for such an application -- imaging small molecules electrochemically in a multicellular structure. While optical microscopy techniques remain paramount for studying biological systems (using photons allows for relatively non-invasive interaction to the biological system being studied), they cannot directly detect critical components of physiology, such as primary metabolism and signaling factors.

The team thought there might be a better way to directly detect small molecules through techniques that employ direct transduction to electrons, without using photos as an intermediary. They made an integrated circuit, a chip that, Shepard says, is an 'active' glass slide, a slide that not only forms a solid-support for the bacterial colony but also 'listens' to the bacteria as they talk to each other."

Cells, Dietrich explains, mediate their physiological activities using secreted molecules. The team looked specifically at phenazines, which are secreted metabolites that control gene expression. Their study found that the bacterial colonies produced a phenazine gradient that, they say, is likely to be of physiological significance and contribute to colony morphogenesis.

"This is a big step forward," Dietrich continues. "We describe using this chip to 'listen in' on conversations taking place in biofilms, but we are also proposing to use it to interrupt these conversations and thereby disrupt the biofilm. In addition to the pure science implications of these studies, a potential application of this would be to integrate such chips into medical devices that are common sites of biofilm formation, such as catheters, and then use the chips to limit bacterial colonization."

The next step for the team will be to develop a larger chip that will enable larger colonies to be imaged at higher spatial and temporal resolutions.

"This represents a new and exciting way in which solid-state electronics can be used to study biological systems," Shepard adds. "This is one of the many emerging ways integrated circuit technology is having impact in biotechnology and the life sciences."

The study was supported by the National Institutes of Health and the National Science Foundation.


Story Source:

The above story is based on materials provided by Columbia University School of Engineering and Applied Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel L. Bellin, Hassan Sakhtah, Jacob K. Rosenstein, Peter M. Levine, Jordan Thimot, Kevin Emmett, Lars E. P. Dietrich, Kenneth L. Shepard. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4256

Cite This Page:

Columbia University School of Engineering and Applied Science. "Chips that listen to bacteria: CMOS technology provides new insights into how biofilms form." ScienceDaily. ScienceDaily, 10 February 2014. <www.sciencedaily.com/releases/2014/02/140210161114.htm>.
Columbia University School of Engineering and Applied Science. (2014, February 10). Chips that listen to bacteria: CMOS technology provides new insights into how biofilms form. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/02/140210161114.htm
Columbia University School of Engineering and Applied Science. "Chips that listen to bacteria: CMOS technology provides new insights into how biofilms form." ScienceDaily. www.sciencedaily.com/releases/2014/02/140210161114.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins