Featured Research

from universities, journals, and other organizations

Robot may accelerate trials for stroke medications

Date:
February 11, 2014
Source:
Massachusetts Institute of Technology
Summary:
A new study's authors found that by using a robot's measurements to gauge patient performance, companies might only have to test 240 patients to determine whether a drug works -- a reduction of 70 percent that would translate to a similar reduction in time and cost.

After suffering a stroke, a patient learns to operate the robot MIT-Manus to improve mobility.
Credit: Photo courtesy of the researchers

The development of drugs to treat acute stroke or aid in stroke recovery is a multibillion-dollar endeavor that only rarely pays off in the form of government-approved pharmaceuticals. Drug companies spend years testing safety and dosage in the clinic, only to find in Phase III clinical efficacy trials that target compounds have little to no benefit. The lengthy process is inefficient, costly, and discouraging, says Hermano Igo Krebs, a principal research scientist in MIT's Department of Mechanical Engineering.

"Most drug studies failed and some companies are getting discouraged," Krebs says. "Many have recently abandoned the neuro area [because] they have spent so much money on developing drugs that don't work. They end up focusing somewhere else."

Now a robot developed by Krebs and his colleagues may help speed up drug development, letting pharmaceutical companies know much earlier in the process whether a drug will ultimately work in stroke patients.

To receive approval from the Food and Drug Administration, a company typically has to enroll 800 patients to demonstrate that a drug is effective during a Phase III clinical trial; this sample size is determined, in part, by the accuracy of standard outcome measurements, which quantify a patient's ability over time to, say, lift her arm past a certain point. A clinical trial can take several years to enroll appropriate patients, run tests, and perform analyses.

The study's authors found that by using a robot's measurements to gauge patient performance, companies might only have to test 240 patients to determine whether a drug works -- a reduction of 70 percent that Krebs says would translate to a similar reduction in time and cost.

While pharmaceutical companies would still have to adhere to the FDA's established guidelines and outcome measurements to receive final drug approval, Krebs says they could use the robot measurements to guide early decisions on whether to further pursue or abandon a certain drug. If, after 240 patients, a drug has no measurable effect, the company can pursue other therapeutic avenues. If, however, a drug improves performance in 240 robot-measured patients, the pharmaceutical company can continue investing in the trial with confidence that the drug will ultimately pass muster.

The researchers, including senior author Bruce Volpe of the Feinstein Institute for Medical Research in Manhasset, N.Y., and Michael Krams, of Janssen Research Development in Titusville, N.J., have published their results in the journal Stroke.

Creating a translator for stroke recovery

In their study, Krebs and his colleagues explored the robot MIT-Manus as a tool for evaluating patient improvement over time. The robot, developed by the team at MIT's Newman Laboratory for Biomechanics and Human Rehabilitation, has mainly been used as a rehabilitation tool: Patients play a video game by maneuvering the robot's arm, with the robot assisting as needed.

While the robot has mainly been used as a form of physical therapy, Krebs says it can also be employed as a measurement tool. As a patient moves the robot's arm, the robot collects motion data, including the patient's arm speed, movement smoothness, and aim. For the current study, the researchers collected such data from 208 patients who worked with the robot seven days after suffering a stroke, and continued to do so for three months.

The researchers created an artificial neural network map that relates a patient's motion data to a score that correlates with a standard clinical outcome measurement.

The authors then selected a separate group of nearly 3,000 stroke patients who did not use the robot, but who went through standard clinical tests. In particular, the researchers calculated the "effect size" -- the difference in patient performance from the beginning to the end of a trial, divided by the standard deviation, or variability, of improvement among these patients. To determine whether a drug works, the FDA will often look to a study's effect size.

Using the robot-derived neural network map, the group calculated the effect size at twice the rate usually achieved with standard clinical outcome measurements, indicating that the robot scale demonstrated greater sensitivity in measuring patient recovery.

The study's authors went one step further and performed a power analysis that determines the optimal sample size for a given technique, finding that the robot scale would require only 240 patients to determine a drug's effectiveness -- a reduction in sample size that would save a company up to 70 percent in time and cost.

"Such a savings would be fantastic," says David Reinkensmeyer, a professor of physical medicine and rehabilitation at the University of California at Irvine. "Robotic measurements will help us identify promising treatments with smaller numbers of patients and provide better insight into the mechanisms of the treatments, so that we can target those mechanisms and improve the treatments."

Currently, only a few stroke drugs are in the late stages of development. However, once a company reaches a Phase III clinical trial, Krebs says it may use the MIT-Manus robot as a more efficient way to evaluate the drug's impact by employing the measurement techniques on a smaller group of patients.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Jennifer Chu. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. I. Krebs, M. Krams, D. K. Agrafiotis, A. DiBernardo, J. C. Chavez, G. S. Littman, E. Yang, G. Byttebier, L. Dipietro, A. Rykman, K. McArthur, K. Hajjar, K. R. Lees, B. T. Volpe. Robotic Measurement of Arm Movements After Stroke Establishes Biomarkers of Motor Recovery. Stroke, 2013; 45 (1): 200 DOI: 10.1161/STROKEAHA.113.002296

Cite This Page:

Massachusetts Institute of Technology. "Robot may accelerate trials for stroke medications." ScienceDaily. ScienceDaily, 11 February 2014. <www.sciencedaily.com/releases/2014/02/140211113833.htm>.
Massachusetts Institute of Technology. (2014, February 11). Robot may accelerate trials for stroke medications. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/02/140211113833.htm
Massachusetts Institute of Technology. "Robot may accelerate trials for stroke medications." ScienceDaily. www.sciencedaily.com/releases/2014/02/140211113833.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins