Featured Research

from universities, journals, and other organizations

New stem cell method may eliminate need for blood donations to maintain platelet supply

Date:
February 13, 2014
Source:
Cell Press
Summary:
Platelets, whose primary function is to prevent bleeding, are vital for treating various forms of trauma and blood diseases. However, they can only be obtained through blood donations at present. Researchers recently found a way to create platelets without the need for donated blood, an advance that could possibly erase supply shortages and ensure platelet treatments for all who need them.

Platelets, whose primary function is to prevent bleeding, are vital for treating various forms of trauma and blood diseases. However, they can only be obtained through blood donations at present. Researchers reporting online February 13 in the Cell Press journal Cell Stem Cell recently found a way to create platelets without the need for donated blood, an advance that could possibly erase supply shortages and ensure platelet treatments for all who need them.

The supply of donated platelets, which have a short shelf life and must be kept at room temperature, is often insufficient to meet clinical needs. In addition, while transfused platelets do not typically need to be immune-matched to patients, repeated transfusion of unmatched platelets leads to an immune reaction that eventually renders patients unresponsive to platelet transfusion therapy.

To address these limitations, investigators from Japan developed a strategy to derive functional platelets from human induced pluripotent stem cells. Induced pluripotent stem cells can be generated from various types of cells in the body, and they can in turn be coaxed to develop into nearly any other cell type. In the current study, the approach involved genetically manipulating such stem cells to become stable immortalized lines of platelet-producing cells called megakaryocyte progenitors.

The megakaryocyte progenitors could produce large quantities of platelets with clotting capabilities that were similar to those of donated platelets. Unlike freshly donated platelets, though, the immortalized megakaryocyte progenitors could be expanded and frozen for long-term storage.

"Here we established a method to achieve the long-term self-replication of megakaryocyte progenitors as an immortalized cell line, which could eventually contribute to large-scale cultivation and production of platelets," says senior author Dr. Koji Eto of Kyoto University and the University of Tokyo.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sou Nakamura, Naoya Takayama, Shinji Hirata, Hideya Seo, Hiroshi Endo, Kiyosumi Ochi, Ken-ichi Fujita, Tomo Koike, Ken-ichi Harimoto, Takeaki Dohda, Akira Watanabe, Keisuke Okita, Nobuyasu Takahashi, Akira Sawaguchi, Shinya Yamanaka, Hiromitsu Nakauchi, Satoshi Nishimura, Koji Eto. Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2014; DOI: 10.1016/j.stem.2014.01.011

Cite This Page:

Cell Press. "New stem cell method may eliminate need for blood donations to maintain platelet supply." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213122350.htm>.
Cell Press. (2014, February 13). New stem cell method may eliminate need for blood donations to maintain platelet supply. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/02/140213122350.htm
Cell Press. "New stem cell method may eliminate need for blood donations to maintain platelet supply." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213122350.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Hundreds in Virginia Turn out for a Free Clinic to Manage Health

Hundreds in Virginia Turn out for a Free Clinic to Manage Health

AFP (July 24, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th - prompting hundreds in Virginia to turn out for a free clinic run by “Remote Area Medical”. Duration 02:40 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins