Featured Research

from universities, journals, and other organizations

Cosmic roadmap to galactic magnetic field revealed

Date:
February 13, 2014
Source:
University of New Hampshire
Summary:
Scientists report that recent, independent measurements have validated one of the IBEX mission's signature findings -- a mysterious "ribbon" of energy and particles at the edge of our solar system that appears to be a directional "roadmap in the sky" of the local interstellar magnetic field.

Cosmic ray intensities (left) compared with predictions (right) from IBEX. The similarity between these observations and predictions—as evidenced by the similar color regions—supports the local galactic magnetic field direction determined from IBEX observations made from particles at vastly lower energies than the cosmic ray observations shown here. The blue area represents regions of lower fluxes of cosmic rays. The gray and white lines separate regions of different energies—lower energies above the lines, high energies below.
Credit: Image courtesy of Nathan Schwadron, UNH-EOS

Scientists on NASA's Interstellar Boundary Explorer (IBEX) mission, including a team leader from the University of New Hampshire, report that recent, independent measurements have validated one of the mission's signature findings -- a mysterious "ribbon" of energy and particles at the edge of our solar system that appears to be a directional "roadmap in the sky" of the local interstellar magnetic field.

Related Articles


Unknown until now, the direction of the galactic magnetic field may be a missing key to understanding how the heliosphere -- the gigantic bubble that surrounds our solar system -- is shaped by the interstellar magnetic field and how it thereby helps shield us from dangerous incoming galactic cosmic rays. "Using measurements of ultra-high energy cosmic rays on a global scale, we now have a completely different means of verifying that the field directions we derived from IBEX are consistent," says Nathan Schwadron, lead scientist for the IBEX Science Operations Center at the UNH Institute for the Study of Earth, Oceans, and Space. Schwadron and IBEX colleagues published their findings online today in Science.

Establishing a consistent local interstellar magnetic field direction using IBEX low-energy neutral atoms and galactic cosmic rays at ten orders of magnitude higher energy levels has wide-ranging implications for the structure of our heliosphere and is an important measurement to be making in tandem with the Voyager 1 spacecraft, which is in the process of passing beyond our heliosphere.

"The cosmic ray data we used represent some of the highest energy radiation we can observe and are at the opposite end of the energy range compared to IBEX's measurements," says Schwadron. "That it's revealing a consistent picture of our neighborhood in the galaxy with what IBEX has revealed gives us vastly more confidence that what we're learning is correct."

How magnetic fields of galaxies order and direct galactic cosmic rays is a crucial component to understanding the environment of our galaxy, which in turn influences the environment of our entire solar system and our own environment here on Earth, including how that played into the evolution of life on our planet.

Notes David McComas, principal investigator of the IBEX mission at Southwest Research Institute and coauthor on the Science Express paper, "We are discovering how the interstellar magnetic field shapes, deforms, and transforms our entire heliosphere."

To date, the only other direct information gathered from the heart of this complex boundary region is from NASA's Voyager satellites. Voyager 1 entered the heliospheric boundary region in 2004, passing beyond what's known as the termination shock where the solar wind abruptly slows. Voyager 1 is believed to have crossed into interstellar space in 2012.

Interestingly, when scientists compared the IBEX and cosmic ray data with Voyager 1's measurements, the Voyager 1 data provide a different direction for the magnetic fields just outside our heliosphere.

That's a puzzle but it doesn't necessarily mean one set of data is wrong and one is right. Voyager 1 is taking measurements directly, gathering data at a specific time and place, while IBEX gathers information averaged over great distances -- so there is room for discrepancy. Indeed, the very discrepancy can be used as a clue: understand why there's a difference between the two measurements and gain new insight.

"It's a fascinating time," says Schwadron. "Fifty years ago, we were making the first measurements of the solar wind and understanding the nature of what was just beyond near-Earth space. Now, a whole new realm of science is opening up as we try to understand the physics all the way outside the heliosphere."

Eberhard Möbius, UNH principal scientist for the IBEX-Lo instrument on board, is a coauthor on the Science paper along with colleagues from institutions around the country.


Story Source:

The above story is based on materials provided by University of New Hampshire. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. A. Schwadron, F. C. Adams, E. R. Christian, P. Desiati, P. Frisch, H. O. Funsten, J. R. Jokipii, D. J. McComas, E. Moebius, and G.P. Zank. Global Anisotropies in TeV Cosmic Rays Related to the Sun’s Local Galactic Environment from IBEX. Science, 13 February 2014 DOI: 10.1126/science.1245026

Cite This Page:

University of New Hampshire. "Cosmic roadmap to galactic magnetic field revealed." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213142231.htm>.
University of New Hampshire. (2014, February 13). Cosmic roadmap to galactic magnetic field revealed. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/02/140213142231.htm
University of New Hampshire. "Cosmic roadmap to galactic magnetic field revealed." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213142231.htm (accessed October 31, 2014).

Share This



More Space & Time News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Antares Liftoff Explosion

Raw: Antares Liftoff Explosion

AP (Oct. 29, 2014) — Observers near Wallops Island recorded what they thought would be a routine rocket launch Tuesday night. What they recorded was a major rocket explosion shortly after lift off. (Oct 29) Video provided by AP
Powered by NewsLook.com
Raw: Russian Cargo Ship Docks at Space Station

Raw: Russian Cargo Ship Docks at Space Station

AP (Oct. 29, 2014) — Just hours after an American cargo run to the International Space Station ended in flames, a Russian supply ship has arrived at the station with a load of fresh supplies. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Journalist Captures Moment of Antares Rocket Explosion

Journalist Captures Moment of Antares Rocket Explosion

Reuters - US Online Video (Oct. 29, 2014) — A space education journalist is among those who witness and record the explosion of an unmanned Antares rocket seconds after its launch. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Rocket Explosion Under Investigation

Rocket Explosion Under Investigation

AP (Oct. 28, 2014) — NASA and Orbital Sciences officials say they are investigating the explosion of an unmanned commercial supply rocket bound for the International Space Station. It blew up moments after liftoff Tuesday evening over the launch site in Virginia. (Oct. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Magnetic System Beyond the Solar Wind Challenge Current Understandings

Feb. 14, 2014 — Scientists are challenging our current understanding in a new study that combines observations of massively energetic cosmic ray particles streaming in from elsewhere in the Milky ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins