Featured Research

from universities, journals, and other organizations

Undergraduate invention aims to lower costs of organ cell printing

Date:
February 20, 2014
Source:
University of Alabama Huntsville
Summary:
A specialized 3-D printing extruder developed by a sophomore and his collaborator could lower the costs of printing cellular structures for use in drug testing. “We’re using the sugar molecules in a form of reverse 3-D printing,” says the student. “In this process, we first make the structures we want and then we embed them into a cellular matrix.” After cells held in suspension in an agarose solution are grown around the vascular structure, a solvent can be used to wash the sugar away. The result is a cell mass that contains vessels like a human organ would.

Devon Bane, left, and Tanner Carden with their CarmAl extruder in a lab at UAH’s Shelby Center for Technology.
Credit: Michael Mercier / UAH

A specialized 3-D printing extruder developed by a University of Alabama in Huntsville (UAH) sophomore and his collaborator could lower the costs of printing cellular structures for use in drug testing. The CarmAl extruder – shorthand for Carbohydrate Anhydrous Rapid Manufacturing Aluminum extruder – its controlling software and the manufacturing processes being developed by second-year biological sciences student Tanner Carden and collaborator Devon Bane are able to produce a sugar grid that mimics blood vessels.

Related Articles


Normally a UAH mechanical and aerospace engineering undergraduate student, Bane is taking the semester off to catch up with the numerous inventions and commercial projects with which he’s involved.

The CarmAl extruder’s name is also a play on words, since the inspiration for the technology came from 3-D printers developed to make specialty candies.

“We’re using the sugar molecules in a form of reverse 3-D printing,” says Carden. “In this process, we first make the structures we want and then we embed them into a cellular matrix.” After cells held in suspension in an agarose solution are grown around the vascular structure, a solvent can be used to wash the sugar away.

The result is a cell mass that contains vessels like a human organ would. That’s an advantage for drug tests over flat-dish cell cultures currently used because it more accurately represents living tissue and more of the test cells can be kept alive by vessel-supplied nutrients. “It helps to prevent necrosis in your sample,” says Carden. For example, if the process were used to create liver cells for a drug test, the resulting product “would actually have vascularization in it that is modeled on how a liver works.”

Awarded $9,948 in Charger Innovation Fund support for further development and advised by Biology Department Chair Dr. Debra Moriarity, the device’s creators aim to lower production costs of testing cultures to allow drugs to be screened for failure earlier, saving on the cost of drug development.

“This specific technology is only about two years old,” Carden says. It originated from work by the University of Pennsylvania. When he and Bane became interested, Carden was awarded a UAH Research and Creative Experiences for Undergraduates Program (RCEU) grant to work with Dr. Moriarity on this project. He used some of his stipend to purchase an inexpensive printer kit and then modified the kit to produce parts that were upgrades to itself. “Our whole goal was to keep it cheap and keep it simple.”

One day while pondering how to further modify the kit extruder to become what they needed, Bane suddenly had an inspiration.

“He thought it up on the spot and he freehanded a drawing of it,” says Carden. “Then he brought me this complex technical drawing that my dad understood, and the next day my dad handed me this extruder. It’s very simple and designed much like a syringe.”

After charging his son $12 for the aluminum used, Rodney Carden machined the extruder at General Dynamics Global Imaging Technologies in Cullman.

The printer system uses software to control a solenoid valve that regulates the timing of nitrogen pushing on a sugar solution in the CarmAl extruder. The device uses a modular tip and a heated process at temperatures higher than other extruders to better control the viscosity of the sugar solution for more accurate vascular structures.

The next step is growing cells around the sugar structures created, and Carden is planning to travel to Wake Forest University’s Institute for Regenerative Medicine to learn from a program already using cells in the 3-D printing of biological structures about the techniques and pitfalls involved.

“What we’re looking to do with this new funding is to increase the proprietary features our process has,” Carden says. The pair is especially keen to fully develop unified proprietary software. “I think that’s going to allow us a lot more flexibility in the future because having to make all these open source software programs talk to each other has been the biggest pain.”

Further advances to their system could include addition of 5-D printing capabilities, which would allow the current grid-like vascular structures to flow and branch in a more natural fashion and truly be created in three dimensions.

The future is bright for the field, Carden believes, and the day will arrive when a patient’s own cells will be used with the printing technique to create new replacement organs.

“In five or 10 or maybe 20 years, it will become affordable to actually print a liver or a heart,” he says. “At some point you get to the use of stem cells, and personalized medicine becomes very affordable.”


Story Source:

The above story is based on materials provided by University of Alabama Huntsville. Note: Materials may be edited for content and length.


Cite This Page:

University of Alabama Huntsville. "Undergraduate invention aims to lower costs of organ cell printing." ScienceDaily. ScienceDaily, 20 February 2014. <www.sciencedaily.com/releases/2014/02/140220083007.htm>.
University of Alabama Huntsville. (2014, February 20). Undergraduate invention aims to lower costs of organ cell printing. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/02/140220083007.htm
University of Alabama Huntsville. "Undergraduate invention aims to lower costs of organ cell printing." ScienceDaily. www.sciencedaily.com/releases/2014/02/140220083007.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins