Featured Research

from universities, journals, and other organizations

Nanoscale freezing leads to better imaging

Date:
February 26, 2014
Source:
DOE/Argonne National Laboratory
Summary:
It's an odd twist. For scientists to determine if a cell is functioning properly, they must destroy it. This is what happens in X-ray fluorescence microscopy when biological specimens are exposed to ionizing radiation, which provides images with a level of detail that conventional microscopes just can't match. This exposure can change what is being imaged in profound ways, possibly giving false accounts of how the cell actually works. To address this issue, researchers created a new probe that freezes cells to "see" at greater detail without damaging the sample.

It's an odd twist. For scientists to determine if a cell is functioning properly, they must destroy it.

Related Articles


This is what happens in X-ray fluorescence microscopy when biological specimens are exposed to ionizing radiation, which provides images with a level of detail that conventional microscopes just can't match. This exposure can change what is being imaged in profound ways, possibly giving false accounts of how the cell actually works.

To address this issue, researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory created a new probe that freezes cells to "see" at greater detail without damaging the sample.

The issue boils down to preparation. Traditional X-ray methods look at cells that have either been immersed in water or dehydrated, like astronaut food. For wet specimens at room temperature, the radiation can break the bonds linking molecules together and cause them to scatter, changing the sample's structure.

For dehydrated specimens, potassium and other diffusible ions are washed away during chemical fixation, which kills the cell and loosens the cell membrane, allowing ions to escape. Moreover, when the sample is dehydrated, the cell can shrink, distort or even collapse.

"Imagine a ball. When you dry it, you make it flat," says Si Chen, principle author of the study. "It changes the structure of the sample and also the distribution of the trace elements that we are looking for."

To address this issue, Argonne researchers developed a hard X-ray fluorescence nanoprobe called the Bionanoprobe, which makes three-dimensional images that map out the locations of trace elements, like iron or potassium, in frozen biological samples.

"We don't want to dry the sample; we want to keep it hydrated," says Chen. "We plunge the sample into liquid ethane at very high speeds and then look at the frozen sample directly."

Rapidly cooling biological specimens to temperatures of -260F preserves the natural state of a cell's organelles and trace elements while retaining the water in the sample.

Housed at an undulator beamline at sector 21 of Argonne's Advanced Photon Source, the Bionanoprobe features a vacuum chamber that eliminates frosting and convective heating and automatically acquires tomographic (sectioned images) data sets. Sector 21 is sponsored by a consortium of several universities and a research institute known collectively as the Life Sciences Collaborative Action Team.

The Bionanoprobe can also produce extremely high-resolution images at the smallest scales -- below 100 nanometers. Compare that to a typical human hair, which is 80,000 to 100,000 nanometers wide. Chen uses X-ray optics called zone plates to focus the X-ray beam down to a miniscule small spot. A simple scan produces an image with a full fluorescent spectrum for each scanning step.

Recent tests have been encouraging. One team of researchers successfully acquired differential phase contrast and X-ray fluorescence images simultaneously by raster scanning of a green algae. The former gave researchers some of the algae's ultrastructure, and using the latter, they were able to show evenly distributed potassium and patterned distributions of zinc and iron.

"We can see the trace element distribution, but with biological samples, the contrast from the structure is typically very low," says Chen. "Phase contrast imaging highlights the structural details."

Another study made X-ray fluorescence images of an immortal cervical cancer cell line called HeLa cells. The samples were plunge-frozen, chemically fixed and then treated with an iron oxide core in a titanium dioxide shell nanocomposite, which allowed researchers to determine if the nanocomposites actually made it into the cell nucleus.

Dr. Gale Woloschak, professor at Northwestern University's Feinberg School of Medicine conducted the study. She created nanoparticles that target and kill cancer cells, but when the researchers wanted to see where the nanoparticles actually wound up in the cell, they ran into trouble with traditional X-ray methods.

"This is the problem," says Woloschak. "If you think of how two-dimensional X-ray imaging works, X-rays penetrate through the entire cell, so it's hard to determine whether the nanoparticles are above, below or inside the nucleus. What the Bionanoprobe does is give us a three-dimensional image -- we could actually see that the nanoparticles were imbedded in the nucleus."

The work is reported in "The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities," published last month in the Journal of Synchrotron Radiation.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. The original article was written by Justin H.S. Breaux. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, S. Vogt. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. Journal of Synchrotron Radiation, 2013; 21 (1): 66 DOI: 10.1107/S1600577513029676

Cite This Page:

DOE/Argonne National Laboratory. "Nanoscale freezing leads to better imaging." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226133000.htm>.
DOE/Argonne National Laboratory. (2014, February 26). Nanoscale freezing leads to better imaging. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2014/02/140226133000.htm
DOE/Argonne National Laboratory. "Nanoscale freezing leads to better imaging." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226133000.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins