Featured Research

from universities, journals, and other organizations

First thin films of spin ice reveal cold secrets

Date:
March 12, 2014
Source:
University College London
Summary:
Thin films of spin ice have been shown to demonstrate surprising properties which could help in the development of applications of magnetricity, the magnetic equivalent of electricity.

This image shows the first thin films of spin ice. The orange coloration is a spin ice film of only a few billionths of a meter thickness.
Credit: Bovo, L

Thin films of spin ice have been shown to demonstrate surprising properties which could help in the development of applications of magnetricity, the magnetic equivalent of electricity.

Related Articles


Published today in Nature Communications, a team of researchers based at the London Centre for Nanotechnology (LCN), in collaboration with scientists from Oxford and Cambridge, found that, against expectations, the Third Law of Thermodynamics could be restored in thin films of the magnetic material spin ice.

In the familiar world around us it is always possible to make things colder, but science has established that there is a limit to how cold an object can be -- the so-called `absolute zero' of temperature, or minus 273 degrees centigrade.

At the absolute zero it is expected that the entropy of a substance, a measure of the randomness of the atoms within it, should itself be zero. The concept that absolute zero equates to zero entropy or randomness is called the Third Law of Thermodynamics.

A famous exception to the Third Law is spin ice, in which atomic magnetic moments or `spins' remain random in the approach to absolute zero. This randomness gives spin ice properties that more conventional materials don't have, most notably `magnetic monopoles'.

In this study, the researchers fabricated, for the first time, thin spin ice films with a thicknesses of only a few nanometres.

At about half a degree above absolute zero, the normal entropy of spin ice within the film was found to disappear, showing that the Third Law is restored in these spin ice thin films. Using X-ray diffraction at the LCN, the researchers showed that the films are slightly strained by the `substrate' on which they are grown, which causes the loss of entropy.

"This result shows that we can use strain to drastically alter and control the spin ice state" says Dr. Laura Bovo (UCL London Centre for Nanotechnology) the leading author of the team's paper. "It opens up new possibilities for the control and manipulation of magnetricity and magnetic monopoles in spin ice."

Prof. Steve Bramwell (UCL Department of Physics and Astronomy), another of the paper's authors, added, "Restoration of the Third Law in spin ice thin films adds an unexpected twist to the story of spin ice. How the Third Law is first violated and then restored in spin ice is an interesting question of basic physics."

Control of the entropy of spin ice could potentially be used in a number of applications; for example, magnetic technology in computer hard disks is often based on thin magnetic films.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Bovo, X. Moya, D. Prabhakaran, Yeong-Ah Soh, A.T. Boothroyd, N.D. Mathur, G. Aeppli, S.T. Bramwell. Restoration of the third law in spin ice thin films. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4439

Cite This Page:

University College London. "First thin films of spin ice reveal cold secrets." ScienceDaily. ScienceDaily, 12 March 2014. <www.sciencedaily.com/releases/2014/03/140312082745.htm>.
University College London. (2014, March 12). First thin films of spin ice reveal cold secrets. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/03/140312082745.htm
University College London. "First thin films of spin ice reveal cold secrets." ScienceDaily. www.sciencedaily.com/releases/2014/03/140312082745.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins