Featured Research

from universities, journals, and other organizations

Building new drugs just got easier

Date:
March 12, 2014
Source:
Scripps Research Institute
Summary:
A method for modifying organic molecules has been developed that significantly expands the possibilities for developing new pharmaceuticals and improving old ones. The innovation makes it easier to modify existing organic compounds by attaching biologically active "functional group" to drug molecules. A typical small-molecule drug derives its activity from such functional groups, which are bound to a relatively simple backbone structure consisting chiefly of carbon atoms.

Syringe and medicine vial (stock image). Scientists at The Scripps Research Institute (TSRI) have developed a method for modifying organic molecules that significantly expands the possibilities for developing new pharmaceuticals and improving old ones.
Credit: luiscarceller / Fotolia

Scientists at The Scripps Research Institute (TSRI) have developed a method for modifying organic molecules that significantly expands the possibilities for developing new pharmaceuticals and improving old ones.

"This is a technology that can be applied directly to many medicinally relevant compounds," said Jin-Quan Yu, a professor in TSRI's Department of Chemistry and the senior author of the new report, which appears in Nature March 13, 2014.

The innovation makes it easier to modify existing organic compounds by attaching biologically active "functional group" to drug molecules. A typical small-molecule drug derives its activity from such functional groups, which are bound to a relatively simple backbone structure consisting chiefly of carbon atoms.

Pushing the Boundaries

Chemists over the past half-century or so have devised various methods for adding functional groups to carbon atoms, to make new compounds and to modify old ones. But a certain type of modification has remained largely out of reach.

Known as a "meta" C-H activation, this modification involves the temporary attachment of a helper molecule to one carbon atom, in such a way that the helper molecule extends past the nearest-neighbor carbon atom to the next-nearest carbon atom, and there mediates the addition of a functional group. It is a tricky task for a number of reasons, but mostly because the targeted attachment site is so far away and inaccessible. The carbon in the backbone of a typical organic compound is arranged in rings of six or so carbon atoms -- and thus to reach from one such carbon over a second to a third means reaching almost to the far side of the ring.

In 2012, Yu and his colleagues published a landmark paper, also in Nature, which described a way to accomplish this feat with one set of compounds. They devised a helper molecule, with a long segment called a nitrile, that could attach to one carbon atom on the compound, arch over the next-door carbon atom, and in effect swing a palladium atom at its far end back -- a bit like a crane swinging a wrecking ball -- to the targeted carbon atom. There the palladium atom would act as a catalyst to dislodge the existing occupant, a hydrogen atom, enabling the attachment of the new functional group.

Following the same principle, Yu's team recently came up with a new template for making meta-C-H activations on a much more challenging set of organic compounds. Now, in the new study, the researchers have demonstrated the same task with a major family of compounds known as amines, including medicinally important heterocyclic amines. In so doing, the researchers found a way to use a helper molecule -- also called a template -- that is chemically simpler and more user-friendly than the ones they have described in previous work.

A Boost to Drug Discovery

Unusually for such a project, the TSRI chemists analyzed the 3D atomic structure of their template compound using X-ray crystallography as well as nuclear magnetic resonance spectroscopy. These studies revealed that the new template's ability to mediate the attachment of a new functional group to a distant carbon atom can be "tuned" by making slight changes to its chemical composition, including the choice of the proper metal catalyst at its working end.

"The key is to tune the shape of the template to create a subtle bias towards the targeted carbon hydrogen bond," said Yu. "At the same time the template's movement towards the target site has to be exploited effectively by a super-reactive catalyst."

Compounds that can be modified using the new technique include tetrahydroquinoline, benzooxazines, anilines, benzylamines, 2-phenylpyrrolidines and 2-phenylpiperidines. "All these are commonly used in medicinal chemistry either as final drug compounds or intermediate compounds from which the final compounds are made," Yu said.

Yu is now collaborating with the pharmaceutical company Bristol-Myers Squibb to use his meta-C-H activation techniques to make potential new drug compounds.

"Techniques like this one that enable controlled, remote C-H activation are just beginning to be adopted by industry, and should provide a boost to drug discovery and development efforts for many years to come," Yu said.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ri-Yuan Tang, Gang Li, Jin-Quan Yu. Conformation-induced remote meta-C–H activation of amines. Nature, 2014; 507 (7491): 215 DOI: 10.1038/nature12963

Cite This Page:

Scripps Research Institute. "Building new drugs just got easier." ScienceDaily. ScienceDaily, 12 March 2014. <www.sciencedaily.com/releases/2014/03/140312150059.htm>.
Scripps Research Institute. (2014, March 12). Building new drugs just got easier. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2014/03/140312150059.htm
Scripps Research Institute. "Building new drugs just got easier." ScienceDaily. www.sciencedaily.com/releases/2014/03/140312150059.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins