Featured Research

from universities, journals, and other organizations

Novel marker, possible therapeutic target for cardiovascular calcification identified

Date:
March 13, 2014
Source:
Brigham and Women's Hospital
Summary:
Certain proteins in osteoclasts, a precursor to bone, may be used in helping to destroy cardiovascular calcification by dissolving mineral deposits, a team of researchers has learned. The research suggests a potential therapeutic avenue for patients with cardiovascular calcification.

Cardiovascular calcification (deposits of minerals in heart valves and blood vessels) is a primary contributor to heart disease, the leading cause of death among both men and women in the United States according the Centers for Disease Control and Prevention (CDC).

"Unfortunately, there currently is no medical treatment for cardiovascular calcification, which can lead to acute cardiovascular events, such as myocardial infarction and stroke, as well as heart failure," says Elena Aikawa, MD, PhD, Director of the Vascular Biology Program at the Center for Interdisciplinary Cardiovascular Sciences at Brigham and Women's Hospital (BWH) and Associate Professor of Medicine at Harvard Medical School. "We have not found a way to reverse or slow this disease process, which is associated with aging and common chronic conditions like atherosclerosis, diabetes, and kidney disease."

Led by Dr. Aikawa, a team of researchers at BWH and Kowa Company, Ltd., a Japanese pharmaceutical company, has discovered certain proteins in osteoclasts, a precursor to bone, that may be used in helping to destroy cardiovascular calcification by dissolving mineral deposits. The research, described in the March 2014 issue of Arteriosclerosis, Thrombosis, and Vascular Biology, suggests a potential therapeutic avenue for patients with cardiovascular calcification.

Mature osteoclasts are not typically found in the vasculature. Using unbiased global proteomics (study of proteins), the researchers were able to examine osteoclast-like cells in the vasculature to determine which proteins induced osteoclast formation. They identified more than 100 proteins associated with osteoclast development. Follow-up study validated six candidate proteins, which serve as targets for possible medications that may help promote osteoclast development in the vasculature.

"To advance this research, we need to further understand why osteoclasts are not prevalent in the vaculature, despite active calcification of the heart valves and blood vessels, and determine the difference between calcification in vasculature compared with calcification in bone," said Dr. Aikawa. "Then, we may examine ways to form osteoclasts in the vasculature."


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Itou, N. Maldonado, I. Yamada, C. Goettsch, J. Matsumoto, M. Aikawa, S. Singh, E. Aikawa. Cystathionine -lyase Accelerates Osteoclast Differentiation: Identification of a Novel Regulator of Osteoclastogenesis by Proteomic Analysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013; 34 (3): 626 DOI: 10.1161/%u200BATVBAHA.113.302576

Cite This Page:

Brigham and Women's Hospital. "Novel marker, possible therapeutic target for cardiovascular calcification identified." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313123239.htm>.
Brigham and Women's Hospital. (2014, March 13). Novel marker, possible therapeutic target for cardiovascular calcification identified. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/03/140313123239.htm
Brigham and Women's Hospital. "Novel marker, possible therapeutic target for cardiovascular calcification identified." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313123239.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins