Featured Research

from universities, journals, and other organizations

Number of days without rain to dramatically increase in some world regions

Date:
March 14, 2014
Source:
University of California - San Diego
Summary:
By the end of the 21st century, some parts of the world can expect as many as 30 more days a year without precipitation, according to a new study. Ongoing climate change caused by human influences will alter the nature of how rain and snow falls; areas that are prone to dry conditions will receive their precipitation in narrower windows of time. Computer model projections of future conditions indicate that regions such as the Amazon, Central America, Indonesia, and all Mediterranean climate regions around the world will likely see the greatest increase in the number of "dry days" per year, going without rain for as many as 30 days more every year. California, with its Mediterranean climate, is likely to have five to ten more dry days per year.

By the end of the 21st century, some parts of the world can expect as many as 30 more days a year without precipitation, according to a new study by Scripps Institution of Oceanography, UC San Diego researchers.

Related Articles


Ongoing climate change caused by human influences will alter the nature of how rain and snow falls; areas that are prone to dry conditions will receive their precipitation in narrower windows of time. Computer model projections of future conditions analyzed by the Scripps team indicate that regions such as the Amazon, Central America, Indonesia, and all Mediterranean climate regions around the world will likely see the greatest increase in the number of "dry days" per year, going without rain for as many as 30 days more every year. California, with its Mediterranean climate, is likely to have five to ten more dry days per year.

This analysis advances a trend in climate science to understand climate change on the level of daily weather and on finer geographic scales.

"Changes in intensity of precipitation events and duration of intervals between those events will have direct effects on vegetation and soil moisture," said Stephen Jackson, director of the U.S. Department of the Interior Southwest Climate Science Center, which co-funded the study. "(Study lead author Suraj) Polade and colleagues provide analyses that will be of considerable value to natural resource managers in climate adaptation and planning. Their study represents an important milestone in improving ecological and hydrological forecasting under climate change."

Polade, a postdoctoral researcher at Scripps, said that one of the implications of this finding is that annual rainfall could become less reliable in drying regions as annual averages will be calculated over a smaller number of days. The 28 models used by the team showed agreement in many parts of the world on the change in the number of dry days those regions will receive. They were in less agreement about how intense rain or snow will be when it does fall, although there is general consensus among models that the most extreme precipitation will become more frequent. Climate models agreed even less on how the conflicting daily changes affect annual mean rainfall.

"Looking at changes in the number of dry days per year is a new way of understanding how climate change will affect us that goes beyond just annual or seasonal mean precipitation changes, and allows us to better adapt to and mitigate the impacts of local hydrological changes," said Polade, a postdoctoral researcher who works with Scripps climate scientists Dan Cayan, David Pierce, Alexander Gershunov, and Michael Dettinger, who are co-authors of the study.

In regions like the American Southwest, where precipitation is historically infrequent and where a couple of storms more or fewer can make a wet or a dry year, annual water accumulation varies greatly. A decrease in precipitation frequency translates into even more year-to-year variability in fresh water resources for the Southwest.

"These profound and clearly projected changes make physical and statistical sense, but they are invisible when looking at long-term trends in average climate projections," Gershunov said.

Other regions of the world, most of which are climatologically wet, are projected to receive more frequent precipitation. Most such regions are not on land or are largely uninhabited, the equatorial Pacific Ocean and the Arctic prominent among them.

The authors suggest that follow-up studies should emphasize more fine-scale analyses of dry day occurrences and work towards understanding the myriad regional factors that influence precipitation.

"Climate models have improved greatly in the last 10 years, which allows us to look in detail at the simulation of daily weather rather than just monthly averages," said Pierce.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Robert Monroe. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Number of days without rain to dramatically increase in some world regions." ScienceDaily. ScienceDaily, 14 March 2014. <www.sciencedaily.com/releases/2014/03/140314095100.htm>.
University of California - San Diego. (2014, March 14). Number of days without rain to dramatically increase in some world regions. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/03/140314095100.htm
University of California - San Diego. "Number of days without rain to dramatically increase in some world regions." ScienceDaily. www.sciencedaily.com/releases/2014/03/140314095100.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins