Featured Research

from universities, journals, and other organizations

Tension triggers muscle building

Date:
March 14, 2014
Source:
Max Planck Institute of Biochemistry
Summary:
Skeletal muscles are built from small contractile units, the sarcomeres. They are connected in a well-ordered series to form myofibrils that span the entire muscle. Contractions of these sarcomeres result in contraction of the respective muscle. Scientists recently identified a key mechanism how this muscle architecture is built during development. 'Mechanical tension is the essential trigger,' explains the group leader.

When muscles (green) and tendons (red) are under tension, regular myofibrils assemble, with their sarcomeric units arrayed like pearls on a string (on the right in green).
Credit: Manuela Weitkunat © MPI of Biochemistry

Skeletal muscles are built from small contractile units, the sarcomeres. Many of these sarcomeres are connected in a well-ordered series to form myofibrils that span from one muscle end to the other. Contractions of these sarcomeres result in contraction of the entire muscle. Scientists at the Max Planck Institute (MPI) of Biochemistry in Munich-Martinsried (Germany) recently identified a key mechanism how this basic muscle architecture is built during development. "Mechanical tension is the essential trigger" explains Frank Schnorrer, head of the research group Muscle Dynamics. "If tension is eliminated, no regular myofibrils, but only short, random protein assemblies can form. Such muscles are entirely non-functional." These results have now been published in the journal Current Biology.

In order to move the body, skeletal muscles are pulling on the skeleton. For efficient muscle and skeletal movements it is essential that the muscle contracts only along a defined axis, for instance for the leg movement along the thigh. Such a directed contraction is achieved by the myofibrils that span through the entire length of the muscle. At both ends, the myofibrils are anchored to the tendon cells, which themselves are linked to the skeleton. "Thereby, the entire force is transduced from the muscle to the skeleton," Frank Schnorrer describes. How can the regular architecture of a many hundred sarcomeres long myofibril be built along a defined axis during muscle development?

PhD student Manuela Weitkunat and PostDoc Aynur Kaya-Çopur were investigating this question in the fruit fly Drosophila melanogaster. They discovered that shortly after the Drosophila flight muscles contact their tendons, mechanical tension is established. This tension buildup occurs before sarcomeres are formed and reaches through the entire muscle-tendon-skeleton system. This tension axis equips the muscle with positional information along which the sarcomeres must form.

Absence of tension results in chaos

By using genetic mutations in the fly, the scientists of the Muscle Dynamics group have been able to block the attachment of flight muscles to tendons and thus eliminate tension formation in the system. As a consequence, muscles could not build long regular myofibrils anymore but instead distribute the sarcomeric protein complexes chaotically. In order to directly test the influence of mechanical tension, the scientists used a laser to cut the tendons off the muscle. This strategy of tension release also led to a major defect in sarcomere and myofibril formation. "Based on these results, we are suggesting a new model of myofibril formation, which proposes tension dependent self-assembly of the sarcomeric components," explains Frank Schnorrer. "When a certain tension threshold is reached, myofibril formation is triggered. If tension is compromised, the sarcomeric components have no spatial information and assemble chaotically."

As human muscles also contain myofibrils that are built by periodically arrayed sarcomeres, it is likely that a similar tension-based assembly model may also apply during human muscle development, so the scientists think.


Story Source:

The above story is based on materials provided by Max Planck Institute of Biochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Weitkunat, A. Kaya-Çopur, S.W. Grill and and F. Schnorrer. Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Current Biology, March 2014 DOI: 10.1016/j.cub.2014.02.032

Cite This Page:

Max Planck Institute of Biochemistry. "Tension triggers muscle building." ScienceDaily. ScienceDaily, 14 March 2014. <www.sciencedaily.com/releases/2014/03/140314212222.htm>.
Max Planck Institute of Biochemistry. (2014, March 14). Tension triggers muscle building. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2014/03/140314212222.htm
Max Planck Institute of Biochemistry. "Tension triggers muscle building." ScienceDaily. www.sciencedaily.com/releases/2014/03/140314212222.htm (accessed September 24, 2014).

Share This



More Health & Medicine News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) — The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) — Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) — The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) — No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins