Featured Research

from universities, journals, and other organizations

Coercivity of material changed by patterning surface

Date:
March 18, 2014
Source:
North Carolina State University
Summary:
Researchers have found a way to reduce the coercivity of nickel ferrite (NFO) thin films by as much as 80 percent by patterning the surface of the material, opening the door to more energy efficient high-frequency electronics, such as sensors, microwave devices and antennas.

By creating a corduroy pattern on the surface of NFO thin films, researchers have been able to lower the coercivity of the NFO by 30 to 80 percent, depending on the thickness of the film.
Credit: Goran Rasic

Researchers from North Carolina State University have found a way to reduce the coercivity of nickel ferrite (NFO) thin films by as much as 80 percent by patterning the surface of the material, opening the door to more energy efficient high-frequency electronics, such as sensors, microwave devices and antennas.

Related Articles


"This technique reduces coercivity, which will allow devices to operate more efficiently, reducing energy use and improving device performance," says Goran Rasic, a Ph.D. student at NC State and lead author of a paper describing the work. "We did this work on NFO but, because the reduced coercivity is a direct result of the surface patterning, we think our technique would work for other magnetic materials as well."

Coercivity is a property of magnetized materials and is the amount of magnetic field needed to bring a material's magnetization to zero. Basically, it's how much a material likes being magnetic. For devices that rely on switching current back and forth repeatedly -- such as most consumer electronics -- you want materials that have low coercivity, which improve device performance and use less energy.

Iron oxides, like NFO, have a variety of properties that are desirable for use in high-frequency devices, but they do have a down side: they have high coercivity. The new research from NC State helps address this problem.

By creating a corduroy pattern on the surface of NFO thin films, researchers have been able to lower the coercivity of the NFO by 30 to 80 percent, depending on the thickness of the film. Thinner films experience a larger reduction in coercivity. The surface pattern on the NFO films consists of raised structures that are 55 nanometers (nm) high and 750 nm wide. The structures run parallel to each other and are spaced 750 nm apart, creating the corduroy effect.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Goran Rasic, Justin Schwartz. Coercivity Reduction in Nickel Ferrite (NiFe2O4) Thin Films through Surface Patterning. IEEE Magnetics Letters, 2014; 5: 1 DOI: 10.1109/LMAG.2014.2302246

Cite This Page:

North Carolina State University. "Coercivity of material changed by patterning surface." ScienceDaily. ScienceDaily, 18 March 2014. <www.sciencedaily.com/releases/2014/03/140318112030.htm>.
North Carolina State University. (2014, March 18). Coercivity of material changed by patterning surface. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2014/03/140318112030.htm
North Carolina State University. "Coercivity of material changed by patterning surface." ScienceDaily. www.sciencedaily.com/releases/2014/03/140318112030.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Driverless Budii Gives the Wheel Feel

Driverless Budii Gives the Wheel Feel

Reuters - Business Video Online (Mar. 6, 2015) The Rinspeed Budii Concept car is creating a driverless stir at this year&apos;s Geneva car show. It&apos;s an all-electric autonomous vehicle with a difference. Ciara Lee reports. Video provided by Reuters
Powered by NewsLook.com
Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins