Featured Research

from universities, journals, and other organizations

Small step towards growing tissue in the lab

Date:
March 19, 2014
Source:
University of Adelaide
Summary:
Mathematicians have devised a method for identifying how cell clusters have formed by analyzing an image of the cluster. Their modelling tool will be useful in helping biologists and tissue engineers to move towards growing human tissue such as liver in the laboratory.

University of Adelaide mathematicians have devised a method for identifying how cell clusters have formed by analysing an image of the cluster.

Published in the Journal of Theoretical Biology, their mathematical modelling tool will be useful in helping biologists and tissue engineers to move towards growing human tissue such as liver in the laboratory.

"When any tissue or organ develops, the cells have to organise themselves into the correct structure," says Dr Edward Green, researcher in the University's School of Mathematical Sciences. "This self-organisation process is important in regenerative medicine where scientists are trying to grow tissues in the laboratory. Getting the right structure is key to ensuring the tissue is viable and functional.

"We know that the control of the organisation process is very complex, and it's still not well understood, which is why we're using modelling to explore simple examples like cluster formation. We looked at two main ways of producing cell clusters -- by attraction through chemical and other signals and by proliferation (cells dividing).

"The idea behind our research is that, for any particular cell type, if you are trying to get cells to organise in certain ways, you need to know how they are behaving. We show how you might be able to analyse this using a combination of models and image analysis."

The paper introduces a quantitative measure of the pattern of clustering from an image, producing a statistic called the 'pair correlation function' which shows the relationship between cells.

"The two clustering mechanisms produce different patterns. In some cases you can spot the differences simply by looking, but the pair correlation function allows you to distinguish them, even when you can't see any obvious differences between the pictures by eye," says Dr Green.

They validated their mathematical model experimentally using cells with known clustering mechanisms in collaboration with Queensland University of Technology.

"Our tool gives a basic understanding of the process in clustering," says co-author Dr Ben Binder, Senior Lecturer in the School of Mathematical Sciences. "It will be useful in assessing what factors may be used to enhance the process of growing cells.

"Next steps will be feeding experimental data back into the model to simulate biological processes. Instead of running lengthy and expensive experiments, we can look at the potential effects of different factors through the computer."


Story Source:

The above story is based on materials provided by University of Adelaide. Note: Materials may be edited for content and length.


Journal Reference:

  1. D.J.G. Agnew, J.E.F. Green, T.M. Brown, M.J. Simpson, B.J. Binder. Distinguishing between mechanisms of cell aggregation using pair-correlation functions. Journal of Theoretical Biology, 2014; DOI: 10.1016/j.jtbi.2014.02.033

Cite This Page:

University of Adelaide. "Small step towards growing tissue in the lab." ScienceDaily. ScienceDaily, 19 March 2014. <www.sciencedaily.com/releases/2014/03/140319093830.htm>.
University of Adelaide. (2014, March 19). Small step towards growing tissue in the lab. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/03/140319093830.htm
University of Adelaide. "Small step towards growing tissue in the lab." ScienceDaily. www.sciencedaily.com/releases/2014/03/140319093830.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins