Featured Research

from universities, journals, and other organizations

Dry future climate could reduce orchid bee habitat

Date:
March 19, 2014
Source:
Cornell University
Summary:
During Pleistocene era climate changes, neotropical orchid bees that relied on year-round warmth and wet weather found their habitats reduced by 30 to 50 percent, according to a study that used computer models and genetic data to understand bee distributions during past climate changes.

An orchid bee fitted with a radio tracker.
Credit: Christian Ziegler

During Pleistocene era climate changes, neotropical orchid bees that relied on year-round warmth and wet weather found their habitats reduced by 30 to 50 percent, according to a Cornell University study that used computer models and genetic data to understand bee distributions during past climate changes.

Related Articles


In previous studies, researchers have tracked male and female orchid bees and found that while females stay near their nests, male orchid bees travel, with one study concluding they roam as far as 7 kilometers per day. These past findings, corroborated by genetic data in the current study, reveal that males are more mobile than females.

The study, published online in the journal Molecular Ecology, has important implications for future climate changes.

"The dataset tells us that if the tendency is to have lower precipitation in combination with deforestation, the suitable habitat for the bees is going to be reduced," said Margarita López-Uribe, the paper's first author and a graduate student at Cornell.

The good news is that since male orchid bees habitually travel far, they can keep bee populations connected and healthy.

"The males are mediating genetic exchange among populations, maintaining connectivity in spite of fragmentation of habitats," said López-Uribe. "This is a possible mechanism bees could use to ameliorate the negative impacts of population isolation resulting from future climate changes and deforestation."

By looking at current climate and bee distributions, López-Uribe and colleagues assessed parameters of climate conditions that each of three bee species within the genus Eulaema could tolerate physiologically, including temperature and precipitation variability. She found that one of the three species, Eulaema cingulata, was three times more tolerant to a variety of climatic conditions.

By proceeding with the caveat that physiological tolerance has remained constant -- species tend to be evolutionarily conservative about shifting their niches -- the researchers used computer models to simulate past bee distributions based on climate conditions in the Pleistocene. The results showed that in the past, during periods when the neotropics had lowered precipitation, each species experienced significant reduction in suitable habitat, with E. cingulata maintaining the largest geographical ranges.

Climate and ecological niche computer model simulations were closely matched by genetic data of the two less-tolerant orchid bee species. The genetic data included mitochondrial markers, which are only inherited from females, and nuclear markers, which come from males and females. The mitochondrial DNA showed that individual bees in one geographic area were more closely related to each other than to bees from other areas. The findings suggest the maternal lines of these bees remained in the area and shared the same pools of DNA over time. But the bi-parental nuclear DNA showed more variation between individuals within an area, offering evidence that males traveled and shared their DNA with other regional groups.

Orchid bees live in the neotropics, an ecozone that includes part of South and Central America, the Mexican lowlands and the Caribbean islands. They are one of the most important pollinators, visiting many types of plants, including some 700 species of orchids that are exclusively pollinated by these bees.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Margarita M. López-Uribe, Kelly R. Zamudio, Carolina F. Cardoso, Bryan N. Danforth. Climate, physiological tolerance and sex-biased dispersal shape genetic structure of Neotropical orchid bees. Molecular Ecology, 2014; DOI: 10.1111/mec.12689

Cite This Page:

Cornell University. "Dry future climate could reduce orchid bee habitat." ScienceDaily. ScienceDaily, 19 March 2014. <www.sciencedaily.com/releases/2014/03/140319195721.htm>.
Cornell University. (2014, March 19). Dry future climate could reduce orchid bee habitat. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/03/140319195721.htm
Cornell University. "Dry future climate could reduce orchid bee habitat." ScienceDaily. www.sciencedaily.com/releases/2014/03/140319195721.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Symantec Uncovers Sophisticated Spying Malware Regin

Symantec Uncovers Sophisticated Spying Malware Regin

Newsy (Nov. 24, 2014) — A Symantec white paper reveals details about Regin, a spying malware of unusual complexity which is believed to be state-sponsored. Video provided by Newsy
Powered by NewsLook.com
Hackers Target Business Travellers

Hackers Target Business Travellers

Reuters - Business Video Online (Nov. 24, 2014) — A newly detected malware, dubbed Darkhotel, infects hotel networks with spying software to steal sensitive data from the computers of high profile business executives, warns a leading computer security firm. Ciara Lee reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) — Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
European Parliament Might Call For Google's Break-Up

European Parliament Might Call For Google's Break-Up

Newsy (Nov. 22, 2014) — This is the latest development in an antitrust investigation accusing Google of unfairly prioritizing own products and services in search results. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins