Featured Research

from universities, journals, and other organizations

Can germanium replace silicon in mid-infrared group IV photonics?

Date:
March 24, 2014
Source:
University of Southampton
Summary:
A new research project is aiming to establish whether germanium, a group IV semiconductor, can be used as the material of choice in mid-infrared (mid-IR) photonics circuits and sensors Mid-IR group IV photonics has a number of important application areas, such as chemical and biological sensing, environmental and hazardous substance monitoring, medicine, telecommunications, astronomy, defense and security.

The attached image shows a novel mid-IR waveguide structure for sensing applications.
Credit: Image courtesy of University of Southampton

A new research project led by the University of Southampton is aiming to establish whether germanium, a group IV semiconductor, can be used as the material of choice in mid-infrared (mid-IR) photonics circuits and sensors.

Mid-IR group IV photonics has a number of important application areas, such as chemical and biological sensing, environmental and hazardous substance monitoring, medicine, telecommunications, astronomy, defence and security.

So far, research in mid-IR group IV photonics has focused on silicon-based devices for shorter wavelengths due to its availability, low cost, maturity of fabrication processes, possibility for photonics-electronics integration and a good transparency.

However, the transparency of silicon only extends up to eight micrometres (μm) and is therefore not very suitable as a core material for the mid-IR fingerprint band (8-14 μm). The Mid-Infrared GeRmAnium phoTonIcs fOr seNsing (MIGRATION) project will investigate germanium as an alternative platform to silicon with the aim to future proof emerging technologies in this field. Significantly, compared to silicon, germanium offers a number of other advantages in terms of device development such as higher nonlinear coefficients, better carrier mobility, and the potential to produce active devices based on germanium-based alloys.

Principal Investigator Dr Goran Mashanovich, Reader in Silicon Photonics and Royal Society Research Fellow in the Optoelectronics Research Centre (ORC), says: "This visionary program of research provides us with a unique opportunity to create breakthroughs in the field of mid-infrared group IV photonics.

"The research will be performed in the world-leading facilities available at Southampton, which includes a 120 million cleanroom complex and 94 photonics laboratories. This will not only significantly reduce the fabrication and testing turnaround time, but will also give us much better control over the fabrication processes and offer possibilities to improve designs and generate new ideas."

One of the main outcomes of the project will be to identify high-quality germanium substrates that rival the performance of the well-established silicon-on-insulator wafers. This framework will then be used to demonstrate a library of devices such as waveguides, couplers, filters, amplifiers and modulators that will form the building blocks of integrated on-chip circuits, systems and sensors over an extended wavelength regime.

The interdisciplinary project, which is funded by the Engineering and Physical Sciences Research Council (EPSRC), will be led by Dr Mashanovich and his colleagues from ORC (Dr Frederic Gardes and Dr Anna Peacock) and Electronics and Computer Science (Dr Harold Chong) and will also involve other Southampton researchers from Biology, Chemistry, Engineering and Physics.

The main project adviser will be Dr Richard Soref from the University of Massachusetts, the pioneer of silicon photonics and mid-IR group IV photonics, with other partners including several universities, DSTL and IQE Silicon Compounds Ltd.

Dr Mashanovich adds: "Another huge advantage is that this program will be closely connected with other very recently awarded research projects I am involved in, which investigate near-IR and mid-IR silicon photonics circuits. For example, we will be able to collaborate with researchers that work on integration of active and passive devices in silicon for telecommunication ( 'Silicon Photonics for Future Systems' EPSRC program grant) or sensing applications ( 'Mid-IR silicon photonics sources, detectors and sensors' funded by the Royal Society) and that will certainly facilitate progress achieved in MIGRATION."


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Cite This Page:

University of Southampton. "Can germanium replace silicon in mid-infrared group IV photonics?." ScienceDaily. ScienceDaily, 24 March 2014. <www.sciencedaily.com/releases/2014/03/140324090326.htm>.
University of Southampton. (2014, March 24). Can germanium replace silicon in mid-infrared group IV photonics?. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/03/140324090326.htm
University of Southampton. "Can germanium replace silicon in mid-infrared group IV photonics?." ScienceDaily. www.sciencedaily.com/releases/2014/03/140324090326.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins