Featured Research

from universities, journals, and other organizations

Motor learning: Lining up our sights

Date:
March 24, 2014
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
Neurologists have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective rehabilitation of patients with vestibular or cerebellar dysfunction.

Neurologists at Ludwig-Maximilians-Universitaet (LMU) in Munich have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective rehabilitation of patients with vestibular or cerebellar dysfunction.

When we shift the direction of our gaze, head and eye movements are normally highly coordinated with each other. Indeed, from the many possible combinations of speed and duration for such movements, the brain chooses the one that minimizes the error in reaching the intended line of sight. Dr. Nadine Lehnen, who heads a research group based at LMU's Center for Vertigo and Balance Disorders, in collaboration with her colleague Dr. Murat Saglam and Professor Stefan Glasauer of the Center for Sensorimotor Diseases at LMU, have now published a paper in the latest issue of the journal of Brain which investigates the significance of the vestibular system for this optimization of motor coordination. The vestibular system in the brain is mainly responsible for the maintenance of balance and posture. The new work focused on subjects suffering from bilateral defects in the vestibular system (a complete vestibulopathy) or lesions in the cerebellum, which is functionally linked to it.

The authors of the new study had previously developed a mathematical model that enabled them to predict the horizontal movements of the head and eyes in response to the presentation of an off-center stimulus. "When subjected to repeated trials, healthy subjects are able to select the combination of eye and head movements that minimizes gaze shift variability," says Glasauer. They unconsciously choose the set of movements associated with the least error in the endpoint. Moreover, they can do this even when wearing a helmet with weights attached, which alters the moment of inertia of the head.

Learning to find the endpoint

However, patients who show defects in the vestibular system or the cerebellum have greater difficulty in controlling the direction of gaze in response to changes in their environment. "It turns out that information relayed from the balance organs to the vestibular system is essential for the optimization of gaze shifts," says Nadine Lehnen. Patients with complete bilateral vestibular loss are therefore unable to perform such shifts in the most efficient way. "In striking contrast, patients with cerebellar damage can, to a certain extent, learn to optimize certain parameters of head and eye movements, by adjusting the velocity of head movement, for instance," says Glasauer.

"These results provide the first evidence that the vestibular system is critical for optimizing voluntary movements," says Dr. Kathleen E. Cullen from McGill University in Montreal in a scientific commentary to the study appearing in the print issue of Brain. The new findings are of relevance for the rehabilitation of patients who have suffered damage to the cerebellum and patients with incomplete vestibulopathies. "We assume that gaze shift control in these patients can be enhanced by a rehabilitation training based on active head movements," says Nadine Lehnen. Head movements provide the vestibular feedback which generates the sensorimotor error messages that underlie the ability to learn how to optimize the coordination of eye and head movements. Instead of trying to hold their heads steady, these patients should be encouraged to actively move their heads, when they shift their gaze.

The question if patients with partial vestibulopathy can optimize gaze shift behavior by engaging in active head movements is now under investigation. This work forms part of a rehabilitation study which is being carried out at the Center for Vertigo and Balance Disorders at Munich University Hospitals, and is financed by the Federal Ministry for Education and Research.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Sa lam, S. Glasauer, N. Lehnen. Vestibular and cerebellar contribution to gaze optimality. Brain, 2014; 137 (4): 1080 DOI: 10.1093/brain/awu006

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "Motor learning: Lining up our sights." ScienceDaily. ScienceDaily, 24 March 2014. <www.sciencedaily.com/releases/2014/03/140324133140.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2014, March 24). Motor learning: Lining up our sights. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/03/140324133140.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "Motor learning: Lining up our sights." ScienceDaily. www.sciencedaily.com/releases/2014/03/140324133140.htm (accessed August 21, 2014).

Share This




More Mind & Brain News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins