Featured Research

from universities, journals, and other organizations

Identifying gene-enhancers: New technique

Date:
March 24, 2014
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
A new technique for identifying gene enhancers -- sequences of DNA that act to amplify the expression of a specific gene -- in the genomes of humans and other mammals has been developed. Called SIF-seq, this new technique complements existing genomic tools, such as ChIP-seq, and offers additional benefits.

Diane Dickel is the lead author of Nature Methods paper describing a new technique for identifying gene enhancers in the genomes of humans and other mammals.
Credit: Roy Kaltschmidt

An international team led by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new technique for identifying gene enhancers -- sequences of DNA that act to amplify the expression of a specific gene -- in the genomes of humans and other mammals. Called SIF-seq, for site-specific integration fluorescence-activated cell sorting followed by sequencing, this new technique complements existing genomic tools, such as ChIP-seq (chromatin immunoprecipitation followed by sequencing), and offers some additional benefits.

"While ChIP-seq is very powerful in that it can query an entire genome for characteristics associated with enhancer activity in a single experiment, it can fail to identify some enhancers and identify some sites as being enhancers when they really aren't," says Diane Dickel, a geneticist with Berkeley Lab's Genomics Division and member of the SIF-seq development team. "SIF-seq is currently capable of testing only hundreds to a few thousand sites for enhancer activity in a single experiment, but can determine enhancer activity more accurately than ChIP-seq and is therefore a very good validation assay for assessing ChIP-seq results."

Dickel is the lead author of a paper in Nature Methods describing this new technique. The paper is titled "Function-based identification of mammalian enhancers using site-specific integration." The corresponding authors are Axel Visel and Len Pennacchio, also geneticists with Berkeley Lab's Genomics Division.

With the increasing awareness of the important role that gene enhancers play in normal cell development as well as in disease, there is strong scientific interest in identifying and characterizing these enhancers. This is a challenging task because an enhancer does not have to be located directly adjacent to the gene whose expression it regulates, but can instead be located hundreds of thousands of DNA base pairs away. The challenge is made even more difficult because the activity of many enhancers is restricted to specific tissues or cell types.

"For example, brain enhancers will not typically work in heart cells, which means that you must test your enhancer sequence in the correct cell type," Dickel says.

Currently, enhancers can be identified through chroma­tin-based assays, such as ChIP-seq, which predict enhancer elements indirectly based on the enhancer's association with specific epigenomic marks, such as transcription factors or molecular tags on DNA-associated histone proteins. Visel, Pennacchio, Dickel and their colleagues developed SIF-seq in response to the need for a higher-throughput functional enhancer assay that can be used in a wide variety of cell types and devel­opmental contexts.

"We've shown that SIF-seq can be used to identify enhancers active in cardiomyocytes, neural progenitor cells, and embryonic stem cells, and we think that it has the potential to be expanded for use in a much wider variety of cell types," Dickel says. "This means that many more types of enhancers could potentially be tested in vitro in cell culture."

In SIF-seq, hundreds or thousands of DNA fragments to be tested for enhancer activity are coupled to a reporter gene and targeted into a single, reproducible site in embryonic cell genomes. Every embryonic cell will have exactly one potential enhancer-reporter. Fluorescence-activated sorting is then used to identify and retrieve from this mix only those cells that display strong reporter gene expression, which represent the cells with the most active enhancers.

"Unlike previous enhancer assays for mammals, SIF-seq includes the integration of putative enhancers into a single genomic locus," says Visel. "Therefore, the activity of enhancers is assessed in a reproducible chromosomal context rather than from a transiently expressed plasmid. Furthermore, by making use of embryonic stem cells and in vitro differentia­tion, SIF-seq can be used to assess enhancer activity in a wide variety of disease-relevant cell types."

Adds Pennacchio, "The range of biologically or disease-relevant enhancers that SIF-seq can be used to identify is limited only by currently available stem cell differentiation methods. Although we did not explicitly test the activity of species-specific enhancers, such as those derived from certain classes of repetitive elements, our results strongly suggest that SIF-seq can be used to identify enhancers from other mammalian genomes where desired cell types are difficult or impossible to obtain."

The ability of SIF-seq to use reporter assays in mouse embryonic stem cells to identify human embryonic stem cell enhancers that are not present in the mouse genome opens the door to intriguing research possibilities as Dickel explains.

"Human and chimpanzee genes differ very little, so one hypothesis in evolutionary genomics holds that humans and chimpanzees are so phenotypically different because of differences in the way they regulate gene expression. It is very difficult to carry out enhancer identification through ChIP-seq that would be useful in studying this hypothesis," she says. "However, because SIF-seq only requires DNA sequence from a mammal and can be used in a variety of cell types, it should be possible to compare the neuronal enhancers present in a large genomic region from human to the neuronal enhancers present in the orthologous chimpanzee region. This could potentially tell us interesting things about the genetic differences that differentiate human brain development from that of other primates."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. The original article was written by Lynn Yarris. Note: Materials may be edited for content and length.


Journal Reference:

  1. Diane E Dickel, Yiwen Zhu, Alex S Nord, John N Wylie, Jennifer A Akiyama, Veena Afzal, Ingrid Plajzer-Frick, Aileen Kirkpatrick, Berthold Göttgens, Benoit G Bruneau, Axel Visel, Len A Pennacchio. Function-based identification of mammalian enhancers using site-specific integration. Nature Methods, 2014; DOI: 10.1038/nmeth.2886

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Identifying gene-enhancers: New technique." ScienceDaily. ScienceDaily, 24 March 2014. <www.sciencedaily.com/releases/2014/03/140324145401.htm>.
DOE/Lawrence Berkeley National Laboratory. (2014, March 24). Identifying gene-enhancers: New technique. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/03/140324145401.htm
DOE/Lawrence Berkeley National Laboratory. "Identifying gene-enhancers: New technique." ScienceDaily. www.sciencedaily.com/releases/2014/03/140324145401.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) — How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) — Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) — The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins