Featured Research

from universities, journals, and other organizations

Acrobatic motor protein could pave way for new cancer therapies

Date:
March 26, 2014
Source:
University of Warwick
Summary:
For the first time, researchers have shown how a protein motor, Kif15, uses acrobatic flexibility to navigate within the mitotic spindle. Understanding how it works could prove vital for the development of targeted cancer therapies. The study describes the behavior of Kif15 for the first time and provides a breakthrough step towards understanding the role it plays in cell division.

Researchers at Warwick Medical School have shown for the first time how a protein motor, Kif15, uses acrobatic flexibility to navigate within the mitotic spindle. Understanding how it works could prove vital for the development of targeted cancer therapies.

The new study, published in eLife, describes the behavior of Kif15 for the first time and provides a breakthrough step towards understanding the role it plays in cell division.

Many frontline cancer drugs target microtubules, the molecular cables that are used to build the mitotic spindle -- the protein machine that drives equal separation of chromosomes during mitosis.

By breaking these microtubules, the uncontrolled multiplication of cancerous cells can be stopped. However, cells can become resistant to such drugs and as a result researchers are developing a new class of drug that targets the molecular motors -- tiny protein machines that consume chemical fuel to walk along microtubules, move them around and organize them into the spindle.

One of these molecular motors, Kif11, is a key target for these drugs. Yet when Kif11 is inhibited, it is shown that cells are able to adapt and a second motor, Kif15, picks up some of the workload and enables the continuation of mitosis.

Previous research established that Kif11 is different to other kinesin protein motors, being referred to as a 'dumbbell' on account of having four limbs: allowing it to walk on microtubules and bind two microtubules together. During mitosis it slides these microtubules apart, a key process in cell division. The McAinsh lab at Warwick Medical School have now shown that Kif15 shares this four-limbed property, although it does not appear to be able to slide microtubules apart.

Dr McAinsh, said, "It's fascinating to see that Kif15 is also a dumbbell shape -- but even more interesting are the differences between the two."

"Kif15 can actually switch between microtubules at intersecting points and therefore might be able to circumvent roadblocks or avoid traffic jams caused by other motors. It's the first motor protein we've seen using such a feature."

"We think that Kif15 switches between microtubules by using its additional two limbs: Where it encounters a track that it wants to move onto, it contorts and uses its two not yet attached limbs to grip the new track. In the most basic sense it starts to walk on its hands in a manner not too dissimilar to a circus acrobat."

Along with the ability to easily navigate the spindle, it also moves along microtubules some seven and half times quicker than Kif11 -- at 150nm/s (nanometres per second) rather than 20nm/s.

Now that the team have identified how Kif15 behaves, it is hoped that it will allow for further understanding of the role that it plays in supporting cell division.

Dr McAinsh explained, "A greater knowledge of this protein motor will open the door to developing targeted therapies that can work towards simultaneously restricting both Kif11 and Kif15."


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hauke Drechsler, Toni McHugh, Martin R Singleton, Nicholas J Carter, Andrew D McAinsh. The Kinesin-12 Kif15 is a processive track-switching tetramer. eLife, March 2014 DOI: 10.7554/eLife.01724.004

Cite This Page:

University of Warwick. "Acrobatic motor protein could pave way for new cancer therapies." ScienceDaily. ScienceDaily, 26 March 2014. <www.sciencedaily.com/releases/2014/03/140326114516.htm>.
University of Warwick. (2014, March 26). Acrobatic motor protein could pave way for new cancer therapies. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/03/140326114516.htm
University of Warwick. "Acrobatic motor protein could pave way for new cancer therapies." ScienceDaily. www.sciencedaily.com/releases/2014/03/140326114516.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) — How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) — Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) — The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins