Featured Research

from universities, journals, and other organizations

Probing polarization puzzles: Electron beams to encode data in nanocrystals may improve capacity of computer memory devices

Date:
March 30, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Ferroelectric materials have an intrinsic electrical polarization caused by a small shift in the position of some of their atoms that occurs below a critical point called the Curie temperature. This polarization can be switched by an external electric field, an effect exploited in some computer memory devices.

Ferroelectric materials have an intrinsic electrical polarization caused by a small shift in the position of some of their atoms that occurs below a critical point called the Curie temperature. This polarization can be switched by an external electric field, an effect exploited in some computer memory devices.

Related Articles


By explaining the origin of puzzling polarization patterns previously seen in a ferroelectric material called barium titanate, Rajeev Ahluwalia and Nathaniel Ng at the A*STAR Institute of High Performance Computing in Singapore and colleagues have stumbled on a way to 'write' polarization patterns in nanoscale ferroelectric materials.

Ferroelectric crystals contain a patchwork of nanoscale 'domains', each with a different intrinsic polarization. While an understanding of how these domains form would help to develop reliable applications for ferroelectric materials, two different imaging techniques previously revealed contradictory results about the domains in barium titanate. Ahluwalia's team therefore set out to solve this puzzle.

One technique -- transmission electron microscopy (TEM) -- which uses a beam of electrons to probe a crystal's properties, suggests that the domains comprise long strips arranged in four quadrants, where the net polarization in each quadrant points inward or outward from the surface. The other technique -- piezoresponse force microscopy (PFM) -- also reveals a quadrant formation, but the polarizations are parallel to the surface so that the overall polarization of the crystal forms a closed loop.

Ahluwalia and his colleagues hypothesized that the TEM's electron beam changes the polarization pattern in the sample. PFM, in contrast, uses a sharp tip to detect deformations in the material caused by a localized electric field.

The scientists developed a theoretical model, which revealed that an increase in electron density in the crystal produced the same polarization pattern that they observed with TEM. They also calculated that the radial electric field created by an electron beam could generate other distinctive features of this pattern.

Under normal conditions, an electron beam might not alter the domains. But if the beam is strong enough to heat the sample above the Curie temperature, the material loses its intrinsic polarization. As it cools, the radial electric field induced by the electron beam shapes how the domains reform.

The team's discovery serves as a warning that electron beam techniques could alter the very domains that researchers are seeking to measure. However, electron beams could be used to deliberately alter polarization patterns in ferroelectric materials, something that is potentially useful for the next generation of memory devices with higher storage densities, says Ahluwalia.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Ahluwalia, N. Ng, A. Schilling, R. G. P. McQuaid, D. M. Evans, J. M. Gregg, D. J. Srolovitz, J. F. Scott. Manipulating Ferroelectric Domains in Nanostructures Under Electron Beams. Physical Review Letters, 2013; 111 (16) DOI: 10.1103/PhysRevLett.111.165702

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Probing polarization puzzles: Electron beams to encode data in nanocrystals may improve capacity of computer memory devices." ScienceDaily. ScienceDaily, 30 March 2014. <www.sciencedaily.com/releases/2014/03/140330193642.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, March 30). Probing polarization puzzles: Electron beams to encode data in nanocrystals may improve capacity of computer memory devices. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/03/140330193642.htm
The Agency for Science, Technology and Research (A*STAR). "Probing polarization puzzles: Electron beams to encode data in nanocrystals may improve capacity of computer memory devices." ScienceDaily. www.sciencedaily.com/releases/2014/03/140330193642.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Reuters - Innovations Video Online (Nov. 28, 2014) With consumers demanding more and more from their mobile devices, scientists in Israel and Singapore are developing super fast-charging batteries to power them. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
EU Pushes Google For Worldwide Right To Be Forgotten

EU Pushes Google For Worldwide Right To Be Forgotten

Newsy (Nov. 27, 2014) Privacy regulators recommend Google expand its requested removals to apply to all its web domains. Video provided by Newsy
Powered by NewsLook.com
Predictions Of Tablets' Demise Sound Familiar

Predictions Of Tablets' Demise Sound Familiar

Newsy (Nov. 26, 2014) The tablet's days are numbered, at least according to a recent IDC report. The market-research firm paints a grim outlook for tablets. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins