Featured Research

from universities, journals, and other organizations

Cheap, better-performing lithium-ion batteries created

Date:
March 31, 2014
Source:
University of Southern California
Summary:
Researchers have developed a cheap, high-performing silicon anode and sulfur-based cathode for lithium-ion batteries. Lithium-ion batteries are a popular type of rechargeable battery commonly found in portable electronics and electric or hybrid cars. Scientists have developed a cost-effective (and therefore commercially viable) silicon anode nearly three times more powerful and longer lasting than a typical commercial anode.

Researchers at the USC Viterbi School of Engineering have improved the performance and capacity of lithium batteries by developing better-performing, cheaper materials for use in anodes and cathodes (negative and positive electrodes, respectively).

Lithium-ion batteries are a popular type of rechargeable battery commonly found in portable electronics and electric or hybrid cars. Traditionally, lithium-ion batteries contain a graphite anode, but silicon has recently emerged as a promising anode substitute because it is the second most abundant element on earth and has a theoretical capacity of 3600 milliamp hours per gram (mAh/g), almost 10 times the capacity of graphite. The capacity of a lithium-ion battery is determined by how many lithium ions can be stored in the cathode and anode. Using silicon in the anode increases the battery's capacity dramatically because one silicon atom can bond up to 3.75 lithium ions, whereas with a graphite anode six carbon atoms are needed for every lithium atom.

The USC Viterbi team developed a cost-effective (and therefore commercially viable) silicon anode with a stable capacity above 1100 mAh/g for extended 600 cycles, making their anode nearly three times more powerful and longer lasting than a typical commercial anode.

Up until recently, the successful implementation of silicon anodes in lithium-ion batteries faced one big hurdle: the severe pulverization of the electrode due to the volume expansion and retraction that occurs with the use of silicon. Last year, the same team led by USC Viterbi electrical engineering professor Chongwu Zhou developed a successful anode design using porous silicon nanowires that allowed the material to expand and contract without breaking, effectively solving the pulverization problem.

This solution yielded a new problem, however: the method of producing nanostructured silicon was prohibitively expensive for commercial adoption.

Undeterred, graduate student Mingyuan Ge and other members of Zhou's team built on their previous work to develop a cost-efficient method of producing porous silicon particles through the simple and inexpensive methods of ball-milling and stain-etching.

"Our method of producing nanoporous silicon anodes is low-cost and scalable for mass production in industrial manufacturing, which makes silicon a promising anode material for the next generation of lithium-ion batteries," said Zhou. "We believe it is the most promising approach to applying silicon anodes in lithium-ion batteries to improve capacity and performance."

In addition, graduate student Jiepeng Rong and other team members developed a method of coating sulfur powder with graphene oxide to improve performance in lithium-sulfur batteries. Sulfur has been a promising cathode candidate for many years owing to its high theoretical capacity, which is over 10 times greater than that of traditional metal oxide or phosphate cathodes. Elemental sulfur is also abundant, cheap, and has low toxicity. However, the practical application of sulfur has been greatly hindered by challenges including poor conductivity and poor cyclability, meaning the battery loses power after each charge and dies after a lower number of recharges.

Their research proved that a graphene oxide coating over sulfur can solve both problems. Graphene oxide has unique properties such as high surface area, chemical stability, mechanical strength and flexibility, and is therefore commonly used to coat core materials in products like sensors or solar cells to improve their performance. The team's graphene oxide coating improved the sulfur cathode's capacity to 800 mAh/g for 1000 cycles of charge/discharge, which is over 5 times the capacity of commercial cathodes.

Zhou and his team recently published their results on silicon anodes in Nano Letters [1]. The paper was a collaborative effort among Zhou, USC Viterbi graduate students Mingyuan Ge, Jiepeng Rong, and Xin Fang, as well as Matthew Mecklenburg from the Center for Electron Microscopy and Microanalysis at USC, and researchers from China's Zhejiang University and Lawrence Berkeley National Laboratory. Separately, Zhou, Rong, Ge, and Fang also published results in Nano Letters on their method to easily produce graphene-coated sulfur cathodes for lithium-ion batteries [2].

Now that their separate tests of the negative and positive electrodes have yielded excellent results, the team is now working to test them together in a complete battery. They will next integrate the silicon anode with the sulfur cathode, as well as with other traditional cathode materials, in order to maximize lithium-ion battery capacity and overall performance.

"As far as we can tell, our technologies with both the silicon anode and sulfur cathode are among the most cost-effective solutions and therefore show promise for commercialization to make the next-generation of lithium-ion batteries to power portable electronics and electric vehicles," said USC Viterbi graduate student Rong.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal References:

  1. Mingyuan Ge, Yunhao Lu, Peter Ercius, Jiepeng Rong, Xin Fang, Matthew Mecklenburg, Chongwu Zhou. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon. Nano Letters, 2014; 14 (1): 261 DOI: 10.1021/nl403923s
  2. Jiepeng Rong, Mingyuan Ge, Xin Fang, Chongwu Zhou. Solution Ionic Strength Engineering As a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium–Sulfur (Li–S) Batteries. Nano Letters, 2014; 14 (2): 473 DOI: 10.1021/nl403404v

Cite This Page:

University of Southern California. "Cheap, better-performing lithium-ion batteries created." ScienceDaily. ScienceDaily, 31 March 2014. <www.sciencedaily.com/releases/2014/03/140331144143.htm>.
University of Southern California. (2014, March 31). Cheap, better-performing lithium-ion batteries created. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/03/140331144143.htm
University of Southern California. "Cheap, better-performing lithium-ion batteries created." ScienceDaily. www.sciencedaily.com/releases/2014/03/140331144143.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins