Featured Research

from universities, journals, and other organizations

Antibiotic resistance enzyme caught in the act

Date:
April 7, 2014
Source:
Emory Health Sciences
Summary:
NpmA is a mobile gene in bacteria that confers resistance to aminoglycoside antibiotics. Structural biologists analyze the threat NpmA poses and reveal targets for drug development. A mobile gene called NpmA was discovered in E. coli bacteria isolated from a Japanese patient several years ago. Global spread of NpmA and related antibiotic resistance enzymes could disable an entire class of tools doctors use to fight serious or life-threatening infections.

An antibiotic resistance enzyme modifies part of the ribosome (A1408), making bacteria invulnerable to aminoglycoside antibiotics.
Credit: Image courtesy of Emory Health Sciences

Resistance to an entire class of antibiotics -- aminoglycosides -- has the potential to spread to many types of bacteria, according to new biochemistry research.

Related Articles


A mobile gene called NpmA was discovered in E. coli bacteria isolated from a Japanese patient several years ago. Global spread of NpmA and related antibiotic resistance enzymes could disable an entire class of tools doctors use to fight serious or life-threatening infections.

Using X-ray crystallography, researchers at Emory University School of Medicine made an atomic-scale snapshot of how the enzyme encoded by NpmA interacts with part of the ribosome, protein factories essential for all cells to function. NpmA imparts a tiny chemical change that makes the ribosome, and the bacteria, resistant to the drugs' effects.

The results, published in PNAS Early Edition, provide clues to the threat NpmA poses, but also reveal potential targets to develop drugs that could overcome resistance from this group of enzymes.

First author of the paper is postdoctoral fellow Jack Dunkle, PhD. Co-senior authors are assistant professor of biochemistry Christine Dunham, PhD and associate professor of biochemistry Graeme Conn, PhD.

Doctors generally use aminoglycoside antibiotics only for serious infections, because they can be toxic to the kidney and inner ear. But the growing problem of resistance to other types of antibiotics has sparked renewed interest in aminoglycosides' clinical use.

Examples of aminoglycosides include: streptomycin (the first antibiotic remedy for tuberculosis), kanamycin, tobramycin (often used in cystic fibrosis), gentamicin and neomycin.

Aminoglycosides bind to ribosomes, interfering with protein production in bacteria. Most mobile genes that confer aminoglycoside resistance chemically alter the antibiotics, and are active against only a few antibiotics. Instead, the NpmA-encoded enzyme modifies the ribosome so that aminoglycoside antibiotics don't interfere with it anymore. That's why it's more dangerous.

Another feature of NpmA that makes it dangerous is that it recognizes structural features that are common to all bacterial ribosomes. The information the Emory team obtained suggests that NpmA, found in E. coli, could easily work in other types of bacteria.

The structures of ribosome alone and the NpmA enzyme alone were already available; the Emory team was able to capture the two together in a "pre-catalytic state."

Aminoglycosides are naturally produced by certain types of soil bacteria against other bacteria, and the producer bacteria have to make a resistance enzyme to prevent self-poisoning. Scientists hypothesize that the genes that encode this type of resistance enzymes in pathogenic bacteria were originally acquired from an aminoglycoside producer, Conn says.


Story Source:

The above story is based on materials provided by Emory Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

Emory Health Sciences. "Antibiotic resistance enzyme caught in the act." ScienceDaily. ScienceDaily, 7 April 2014. <www.sciencedaily.com/releases/2014/04/140407153925.htm>.
Emory Health Sciences. (2014, April 7). Antibiotic resistance enzyme caught in the act. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/04/140407153925.htm
Emory Health Sciences. "Antibiotic resistance enzyme caught in the act." ScienceDaily. www.sciencedaily.com/releases/2014/04/140407153925.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins