Featured Research

from universities, journals, and other organizations

Study tests theory that life originated at deep sea vents

Date:
April 9, 2014
Source:
Woods Hole Oceanographic Institution
Summary:
One of the greatest mysteries facing humans is how life originated on Earth. Scientists have determined approximately when life began, roughly 3.8 billion years ago, but there is still intense debate about exactly how life began. One possibility -- that simple metabolic reactions emerged near ancient seafloor hot springs, enabling the leap from a non-living to a living world -- has grown in popularity in the last two decades.

Making methanethiol from the chemicals available in hydrothermal black smoker fluids was thought to have been an easy process. To test this theory, the researchers collected fluids in isobaric gas-tight samplers (IGTs) from black smokers and analyzed them for the presence of methanethiol.
Credit: Chris German, Woods Hole Oceanographic Institution

One of the greatest mysteries facing humans is how life originated on Earth. Scientists have determined approximately when life began (roughly 3.8 billion years ago), but there is still intense debate about exactly how life began. One possibility -- that simple metabolic reactions emerged near ancient seafloor hot springs, enabling the leap from a non-living to a living world -- has grown in popularity in the last two decades.

Recent research by geochemists Eoghan Reeves, Jeff Seewald, and Jill McDermott at Woods Hole Oceanographic Institution (WHOI) is the first to test a fundamental assumption of this 'metabolism first' hypothesis, and finds that it may not have been as easy as previously assumed. Instead, their findings could provide a focus for the search for life on other planets. The work is published in Proceedings of the National Academy of Sciences.

In 1977, scientists discovered biological communities unexpectedly living around seafloor hydrothermal vents, far from sunlight and thriving on a chemical soup rich in hydrogen, carbon dioxide, and sulfur, spewing from the geysers. Inspired by these findings, scientists later proposed that hydrothermal vents provided an ideal environment with all the ingredients needed for microbial life to emerge on early Earth. A central figure in this hypothesis is a simple sulfur-containing carbon compound called "methanethiol" -- a supposed geologic precursor of the Acetyl-CoA enzyme present in many organisms, including humans. Scientists suspected methanethiol could have been the "starter dough" from which all life emerged.

The question Reeves and his colleagues set out to test was whether methanethiol -- a critical precursor of life -- could form at modern day vent sites by purely chemical means without the involvement of life. Could methanethiol be the bridge between a chemical, non-living world and the first microbial life on the planet?

Carbon dioxide, hydrogen and sulfide are the common ingredients present in hydrothermal black smoker fluids. "The thought was that making methanethiol from these basic ingredients at seafloor hydrothermal vents should therefore have been an easy process," adds Reeves.

The theory was appealing, and solved many of the basic problems with existing ideas that life may have been carried to Earth on a comet or asteroid; or that genetic material emerged first -- the "RNA World" hypothesis. However, says Reeves, "it's taken us a while to get out there and actually start to test this 'metabolism first' idea in the natural environment, by using modern vents as analogs for those that were around when life first began."

And when they did get out there, the scientists were surprised by what they found.

To directly measure methanethiol, the researchers went to hydrothermal vent sites where the chemistry predicted they would find abundant methanethiol, and others where very little was predicted to form. In total, they measured the distribution of methanethiol in 38 hydrothermal fluids from multiple differing geologic environments including systems along the Mid-Atlantic Ridge, Guaymas Basin, the East Pacific Rise, and the Mid-Cayman Rise over a period between 2008 and 2012.

"Some systems are very rich in hydrogen, and when you have a lot of hydrogen it should, in theory, be very easy to make a lot of methanethiol," says Reeves. The fluids were collected in isobaric gas-tight samplers (IGTs) developed by Jeffrey Seewald, which maintain fluids at their natural pressure and allow for dissolved gas analyses.

Instead of an abundance of methanethiol, the data they collected in the hydrogen-rich environments showed very little was present. "We actually found that it doesn't matter how much hydrogen you have in black smoker fluids, you don't seem to be making a lot of methanethiol where you should be making a lot of it," Reeves says. Surprisingly, in the low-hydrogen environments, where much less should form, the research actually found more methanethiol than they had predicted, contradicting the original idea of how methanethiol forms. Overall, this means that jump-starting proto-metabolic reactions in hydrogen-rich early Earth hydrothermal systems through carbon-sulfur chemistry would likely have been much harder than many had assumed.

Critically, the researchers found an abundance of methanethiol being formed in low temperature fluids (below about 200C), where hot black smoker fluid mixes with colder sea water beneath the seafloor. The presence of other telltale markers in these fluids, such as ammonia -- a byproduct of biomass breakdown -- strongly suggests these fluids are 'cooking' existing microbial organic matter. The breakdown of existing subseafloor life when conditions get too hot may therefore be responsible for producing large amounts of methanethiol.

"What we essentially found in our survey is that we don't think methanethiol is forming by purely chemical means without the involvement of life. This might be disappointing news for anyone assuming an easy start for hydrothermal proto-metabolism," says Reeves. "However, our finding that methanethiol may be readily forming as a breakdown product of microbial life provides further indication that life is present and widespread below the seafloor and is very exciting."

The researchers believe this new understanding could change how we think about searching for life on other planets. "The upside is, now we have a pretty simple marker for life. Someday if we can land a rover on the ice-covered oceans of Jupiter's moon Europa -- another place in the Solar System that may host hydrothermal vents, and possibly life -- and successfully drill through the ice, the first thing it should probably try to measure is methanethiol," Reeves says. "This is already something scientists are thinking about, and it is exciting to think this might even happen in our life time."

As for the search for the origins of life, Reeves agrees that hydrothermal vents are still a very favorable place for life to emerge, but, he says, "maybe methanethiol just wasn't a good starter dough. The hydrothermal environment is still a perfect place to support early life, and the question of how it all started is still open."

This research was supported by grants from the National Science Foundation and NASA. Additional funds were provided by the WHOI Deep Ocean Exploration Institute, InterRidge, and the Deutsche Forschungsgemeinschaft Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System" (E.P.R.).


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. P. Reeves, J. M. McDermott, J. S. Seewald. The origin of methanethiol in midocean ridge hydrothermal fluids. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1400643111

Cite This Page:

Woods Hole Oceanographic Institution. "Study tests theory that life originated at deep sea vents." ScienceDaily. ScienceDaily, 9 April 2014. <www.sciencedaily.com/releases/2014/04/140409094330.htm>.
Woods Hole Oceanographic Institution. (2014, April 9). Study tests theory that life originated at deep sea vents. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2014/04/140409094330.htm
Woods Hole Oceanographic Institution. "Study tests theory that life originated at deep sea vents." ScienceDaily. www.sciencedaily.com/releases/2014/04/140409094330.htm (accessed September 19, 2014).

Share This



More Fossils & Ruins News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Iconic 'Easy Rider' Chopper Bike to Go on Auction Block

Iconic 'Easy Rider' Chopper Bike to Go on Auction Block

AFP (Sep. 19, 2014) The iconic Harley-Davidson motorbike ridden by Peter Fonda in the 1969 classic "Easy Rider" is to go under the hammer in California, and auctioneers predict it will make at least $1 million. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Egypt Denies Claims Oldest Pyramid Damaged in Restoration

Egypt Denies Claims Oldest Pyramid Damaged in Restoration

AFP (Sep. 17, 2014) Egypt's antiquities minister denied Tuesday claims that the Djoser pyramid, the country's first, had been damaged during restoration work by a company accused of being unqualified to do such work. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
King Richard III's Painful Cause Of Death Revealed

King Richard III's Painful Cause Of Death Revealed

Newsy (Sep. 17, 2014) King Richard III died in the Battle of Bosworth in 1485, and now researchers examining his skull think they know how. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins