Featured Research

from universities, journals, and other organizations

Refining language for chromosomes

Date:
April 17, 2014
Source:
Brigham and Women's Hospital
Summary:
A new classification system that may standardize how structural chromosomal rearrangements are described has been proposed by a team of researchers. Known as Next-Gen Cytogenetic Nomenclature, it is a major contribution to the classification system to potentially revolutionize how cytogeneticists worldwide translate and communicate chromosomal abnormalities.

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in clinical and research reports.

Related Articles


Now a study by researchers at Brigham and Women's Hospital (BWH) proposes a new classification system that may standardize how structural chromosomal rearrangements are described. Known as Next-Gen Cytogenetic Nomenclature, it is a major contribution to the classification system to potentially revolutionize how cytogeneticists worldwide translate and communicate chromosomal abnormalities. The study will be published online April 17, 2014 in The American Journal of Human Genetics.

"As scientists we are moving the field of cytogenetics forward in the clinical space," said Cynthia Morton, PhD, BWH director of Cytogenetics, senior study author. "We will be able to define chromosomal abnormalities and report them in a way that is integral to molecular methods entering clinical practice."

According to the researchers, advances in next-generation sequencing methods and results from BWH's Developmental Genome Anatomy Project (DGAP) revealed an assortment of genes disrupted and dysregulated in human development in over 100 cases. Given the wide variety of chromosomal abnormalities, the researchers recognized that more accurate and full descriptions of structural chromosomal rearrangements were needed.

The nomenclature proposed by Morton and her team goes beyond uncovering chromosomal abnormalities under a microscope to focusing on the unique molecules that are the building blocks of DNA -- nucleotides.

"Cytogeneticists compare karyograms, or pictures of chromosomes, to identify chromosomal abnormalities," said Morton. "In the current system available, we are able to describe certain characteristics of chromosomes, such as chromosome band levels. What we have developed is a new system for describing chromosomal abnormalities at a much more precise level."

"Currently, most DNA sequencing reports only provide nucleotide numbers of the breakpoints in various formats based on the reference genome sequence alignment," said Zehra Ordulu, MD, BWH Department of Obstetrics, Gynecology and Reproductive Medicine, lead study author. "But there are other important characteristics of the rearrangement -- including reference genome identification, chromosome band level, direction of the sequence, homology, repeats, and nontemplated sequence -- that are not described."

The proposed system addresses these characteristics and builds upon the International System for Human Cytogenetic Nomenclature, which is the current official classification system used to describe structural chromosome rearrangements.

To enable use and implementation of the proposed system, the researchers are developing an online tool called "BLA(S)T Output Sequence Tool of Nomenclature," or BOSToN. The tool works by aligning nucleotide sequences to reference human genome sequence. After processing the genetic information, the end result is the Next-Gen Cytogenetic Nomenclature that researchers and clinicians can then incorporate into their reports.

"BOSToN will reduce errors in sequence assessment and save time in generating nomenclature," according to Morton, "both of critical importance in the clinical setting."


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zehra Ordulu, KristenE. Wong, BenjaminB. Currall, AndrewR. Ivanov, Shahrin Pereira, Sara Althari, JamesF. Gusella, MichaelE. Talkowski, CynthiaC. Morton. Describing Sequencing Results of Structural Chromosome Rearrangements with a Suggested Next-Generation Cytogenetic Nomenclature. The American Journal of Human Genetics, 2014; DOI: 10.1016/j.ajhg.2014.03.020

Cite This Page:

Brigham and Women's Hospital. "Refining language for chromosomes." ScienceDaily. ScienceDaily, 17 April 2014. <www.sciencedaily.com/releases/2014/04/140417124402.htm>.
Brigham and Women's Hospital. (2014, April 17). Refining language for chromosomes. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/04/140417124402.htm
Brigham and Women's Hospital. "Refining language for chromosomes." ScienceDaily. www.sciencedaily.com/releases/2014/04/140417124402.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins