Featured Research

from universities, journals, and other organizations

Impact glass from asteroids and comets stores biodata for millions of years

Date:
April 18, 2014
Source:
Brown University
Summary:
Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists exploring large fields of impact glass in Argentina suggest that what happened on Earth might well have happened on Mars millions of years ago. Martian impact glass could hold traces of organic compounds.

The scorching heat produced by asteroid or comet impacts can melt tons of soil and rock, some of which forms glass as it cools. Some of that glass preserves bits of ancient plant material.
Credit: A snapshot of ancient environmental conditions

Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists exploring large fields of impact glass in Argentina suggest that what happened on Earth might well have happened on Mars millions of years ago. Martian impact glass could hold traces of organic compounds.

Asteroid and comet impacts can cause widespread ecological havoc, killing off plants and animals on regional or even global scales. But new research from Brown University shows that impacts can also preserve the signatures of ancient life at the time of an impact.

A research team led by Brown geologist Pete Schultz has found fragments of leaves and preserved organic compounds lodged inside glass created by a several ancient impacts in Argentina. The material could provide a snapshot of environmental conditions at the time of those impacts. The find also suggests that impact glasses could be a good place to look for signs of ancient life on Mars.

The work is published in the latest issue of Geology Magazine.

The scorching heat produced by asteroid or comet impacts can melt tons of soil and rock, some of which forms glass as it cools. The soil of eastern Argentina, south of Buenos Aires, is rife with impact glass created by at least seven different impacts that occurred between 6,000 and 9 million years ago, according to Schultz. One of those impacts, dated to around 3 million years ago, coincides with the disappearance of 35 animal genera, as reported in the journal Science a few years back.

"We know these were major impacts because of how far the glass is distributed and how big the chunks are," Schultz said. "These glasses are present in different layers of sediment throughout an area about the size of Texas."

Within glass associated with two of those impacts -- one from 3 million years ago and one from 9 million years ago -- Schultz and his colleagues found exquisitely preserved plant matter. "These glasses preserve plant morphology from macro features all the way down to the micron scale," Schultz said. "It's really remarkable."

The glass samples contain centimeter-size leaf fragments, including intact structures like papillae, tiny bumps that line leaf surfaces. Bundles of vein-like structures found in several samples are very similar to modern pampas grass, a species common to that region of Argentina.

Chemical analysis of the samples also revealed the presence of organic hydrocarbons, the chemical signatures of living matter.

To understand how these structures and compounds could have been preserved, Schultz and his colleagues tried to replicate that preservation in the lab. They mixed pulverized impact glass with fragments of pampas grass leaves and heated the mixture at various temperatures for various amounts of time. The experiments showed that plant material was preserved when the samples were quickly heated to above 1,500 degrees Celsius.

It appears, Schultz says, that water in the exterior layers of the leaves insulates the inside layers, allowing them to stay intact. "The outside of the leaves takes it for the interior," he said. "It's a little like deep frying. The outside fries up quickly but the inside takes much longer to cook."

Implications for Mars

If impact glass can preserve the signatures of life on Earth, it stands to reason that it could do the same on Mars, Schultz says. And the soil conditions in Argentina that contributed to the preservation of samples in this study are not unlike soils found on Mars.

The Pampas region of Argentina is covered with thick layers of windblown sediment called loess. Schultz believes that when an object impacts this sediment, globs of melted material roll out from the edge of the impact area like molten snowballs. As they roll, they collect material from the ground and cool quickly -- the dynamics that the lab experiments showed were important for preservation. After the impact, those glasses are slowly covered over as dust continues to accumulate. That helps to preserve both the glasses and the stowaways within them for long periods -- in the Argentine case, for millions of years.

Much of the surface of Mars is covered in a loess-like dust, and the same mechanism that preserved the Argentine samples could also work on Mars.

"Impact glass may be where the 4 billion-year-old signs of life are hiding," Schultz said. "On Mars they're probably not going to come out screaming in the form of a plant, but we may find traces of organic compounds, which would be really exciting."


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. H. Schultz, R. S. Harris, S. J. Clemett, K. L. Thomas-Keprta, M. Zarate. Preserved flora and organics in impact melt breccias. Geology, 2014; DOI: 10.1130/G35343.1

Cite This Page:

Brown University. "Impact glass from asteroids and comets stores biodata for millions of years." ScienceDaily. ScienceDaily, 18 April 2014. <www.sciencedaily.com/releases/2014/04/140418141115.htm>.
Brown University. (2014, April 18). Impact glass from asteroids and comets stores biodata for millions of years. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2014/04/140418141115.htm
Brown University. "Impact glass from asteroids and comets stores biodata for millions of years." ScienceDaily. www.sciencedaily.com/releases/2014/04/140418141115.htm (accessed August 31, 2014).

Share This




More Space & Time News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins