Featured Research

from universities, journals, and other organizations

New fluorescent hybrid material changes color according to direction of light

Date:
April 29, 2014
Source:
University of the Basque Country
Summary:
Scientists have developed a highly fluorescent hybrid material that changes color depending on the polarization of the light that it is illuminated by. The aim with respect to hybrid materials with one organic component and another inorganic one is to combine the best attributes of each one into a single system.

CIE system or chromaticity diagram to characterise the colours. Above right: green emission obtained using linearly polarised light along the channels. Below right: blue emission obtained using light linearly perpendicular to the channels NB: the arrows indicate the direction in the polarisation of the light used.
Credit: Image courtesy of University of the Basque Country

The UPV/EHU's Molecular Spectroscopy Group, in collaboration with the Institute of Catalysis and Petroleum Chemistry of the CSIC (Spanish National Research Council), has developed a highly fluorescent hybrid material that changes colour depending on the polarisation of the light that it is illuminated by. The research has been published in ACS Photonics, published by the American Chemical Society.

The aim with respect to hybrid materials with one organic component and another inorganic one is to combine the best attributes of each one into a single system. Labs across the world are working to develop new hybrid materials for technological applications in nanotechnologies, in particular, and these materials are already being used in lightweight materials for cars, sports equipment, in biomimetic materials, like prostheses, etc.

The hybrid material being sought after by the research group in the Department of Physical Chemistry needed to meet a number of very specific requirements. The host inorganic material needed to have a crystalline structure with parallel nanochannels, so that the molecules in the guest organic material, a dye, could be aligned; the size of the pores of the host needed to be less than 1nm (a millionth part of a millimetre) so that the dye would just fit; finally, not just one, but two dyes of similar size and shape were needed, but they had to have complementary optical properties that would respond differently when stimulated by light.

So the main challenge was to achieve that perfect fit between the inorganic nanostructure and the dye molecules. They achieved it by using as the host material an aluminophosphate (AIPO-11) that has a suitable pore size to accommodate dyes with a structure of three fused benzene rings, like the chosen ones: pyronin, with green fluorescence, and acridine, with blue fluorescence. "The dyes enter in order, they align themselves along the nanochannels, and their fluorescent properties are improved in them," explained Virginia Martinez, a Ramón y Cajal researcher in the Molecular Spectroscopy group. The improvement is due not only to the fact that the molecular flexibility of the dye is restricted, but also because the latter is included monomerically, in other words, it enters the channel in separate units, and thanks to that they are highly luminescent because the fluorescence is lost when they are added.

To obtain that perfect fit, the synthesis procedure played a fundamental role. Usually, in photoactive hybrid materials the organic part is inserted into the inorganic part from the gas or liquid phase by means of diffusion, but with this method the occlusion level that this research needed was not achieved. So they opted to insert the dye into the gel with which the inorganic material is synthesised, so that as the crystal grew the organic chromophore would be gradually incorporated.

At the beginning, they inserted a single dye, pyronin, and obtained a highly luminescent material. In fact, by using confocal fluorescence microscopy, they recorded an almost total aligning of the dye molecules along the channel (dichroic ratio of 40), an alignment that had not previously been reported.

They then went on to incorporate pyronin and acridine into the synthesis process at the same time and obtained rectangular crystals of 30 X 20 microns that strikingly changed colour depending on the polarisation of the light they were being illuminated by: if the polarisation took place along the channel it was seen as green; if it occurred perpendicularly, it displayed the colour blue. This behaviour indicated that a transfer of energy was taking place between the dyes.

"The tuning of colour is also an instantaneous, efficient process that can be fully reversed and reproduced with high resistance to fatigue," pointed out Iñigo López-Arbeloa. So the potential applications of photoactive hybrid materials of this type are numerous: they can be used as antenna in photovoltaic cells, to store information, in photonic cables, in laser systems, etc. In fact, the new hybrid material constitutes an advance in the development of tunable solid-state lasers, of great biomedical interest, since they are easier to use and less polluting that the liquids currently being used.


Story Source:

The above story is based on materials provided by University of the Basque Country. Note: Materials may be edited for content and length.


Journal Reference:

  1. Virginia Martínez-Martínez, Raquel García, Luis Gómez-Hortigüela, Rebeca Sola Llano, Joaquín Pérez-Pariente, Iñigo López-Arbeloa. Highly Luminescent and Optically Switchable Hybrid Material by One-Pot Encapsulation of Dyes into MgAPO-11 Unidirectional Nanopores. ACS Photonics, 2014; 1 (3): 205 DOI: 10.1021/ph4000604

Cite This Page:

University of the Basque Country. "New fluorescent hybrid material changes color according to direction of light." ScienceDaily. ScienceDaily, 29 April 2014. <www.sciencedaily.com/releases/2014/04/140429085343.htm>.
University of the Basque Country. (2014, April 29). New fluorescent hybrid material changes color according to direction of light. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/04/140429085343.htm
University of the Basque Country. "New fluorescent hybrid material changes color according to direction of light." ScienceDaily. www.sciencedaily.com/releases/2014/04/140429085343.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins