Featured Research

from universities, journals, and other organizations

Fluorescent sensor developed for detecting nitric oxide, a molecule related to many diseases

Date:
May 5, 2014
Source:
Asociación RUVID
Summary:
The detection of certain chemical compounds in our body is essential to prevent many diseases and set out their treatment. Thus, making advances in the development of compounds that can be easily detected is key for the development of medicine. This is the case of nitric oxide, which is a molecule involved in countless cardiovascular, neurological and immune system processes, among others. The detection of nitric oxide may be executed more efficiently and selectively thanks to a new compound recently developed.

Francisco Galindo and Alicia Beltrán Beltrán.
Credit: Àlex Pérez

The detection of certain chemical compounds in our body is essential to prevent many diseases and set out their treatment. Thus, making advances in the development of compounds that can be easily detected is key for the development of medicine. This is the case of nitric oxide, which is a molecule involved in countless cardiovascular, neurological and immune system processes, among others. The detection of nitric oxide may be executed more efficiently and selectively thanks to a new compound developed by researchers from the Universitat Jaume I (UJI) in Castelló.

The new compounds can detect the presence of nitric oxide by fluorescence. They also have the advantage of being highly selective because they do not interact with other typical substances that can be found in the biological environment. This progress can be very useful to the medical and pharmaceutical industry because nitric oxide is involved in several cellular biochemical processes. For this reason, it is related to pathologies associated with them, i.e.: cancer, Alzheimer, Parkinson, immune disorders, etc. After patenting the results, the group Photochemistry and Sensors ―together with the group Sustainable Chemistry at the Universitat Jaume I (UJI)― have commenced a new search phase of industrial partners to transfer molecules to them or to research and develop applications with them.

"The detection of nitric oxide is essential to understand countless biochemical processes; there are many pathologies associated with this molecule that could be potentially detected if we knew a detailed knowledge of its levels"― reported Francisco Galindo, director of the project developed by the Spanish Ministry of Education, which financed the research. The presence of nitric oxide at a biological level is currently being detected by using molecules named "fluorescent probes"; their main problem is that they also interact with other compounds, and that is why false positives can be given. The organic molecules developed by researchers from the UJI can properly interact with nitric oxide; the newest aspect is that they do not interact with other related species, especially with dehydroascorbic acid (DHA), but it does happen with many current nitric oxide probes.

The developed molecules are obtained by a simple procedure that allows synthesising a large amount of product in a few steps and economically; it is made from commercially accessible products. "Besides, they are highly versatile, which is important when selecting the accurate molecule regarding the excitation source available, either laser or another light source"― explained Galindo.

Once the laboratory phase for synthesising and characterising these compounds is over, the research group is seeking industrial partners to transfer molecules for its commercial exploitation or to work together with them for researching and developing applications. "For instance, as a following step, it will be relevant to manage previous tests at the cellular level to check the potential diagnosis of the new probes"― explained Galindo. Likewise, the lecturer of Organic Chemistry from the UJI stands out: "Given the simplicity of the synthesis of the products and, especially, their minimum amount required for their application, the production could be done in a very short term by any company already established in the chemical sensor field."

The current results will be part of Alicia Beltrán's doctoral thesis, who currently holds a pre-doctoral scholarship of the Spanish Ministry of Education in the Department of Inorganic Chemistry at the UJI.


Story Source:

The above story is based on materials provided by Asociación RUVID. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alicia Beltran et al. Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 2014, 50, 3579-3581

Cite This Page:

Asociación RUVID. "Fluorescent sensor developed for detecting nitric oxide, a molecule related to many diseases." ScienceDaily. ScienceDaily, 5 May 2014. <www.sciencedaily.com/releases/2014/05/140505104227.htm>.
Asociación RUVID. (2014, May 5). Fluorescent sensor developed for detecting nitric oxide, a molecule related to many diseases. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/05/140505104227.htm
Asociación RUVID. "Fluorescent sensor developed for detecting nitric oxide, a molecule related to many diseases." ScienceDaily. www.sciencedaily.com/releases/2014/05/140505104227.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins