Featured Research

from universities, journals, and other organizations

Melting an entire iceberg with a hot poker: Spotting phase changes triggered by impurities

Date:
May 7, 2014
Source:
University College London
Summary:
"What a curious feeling," says Alice in Lewis Carroll's tale, as she shrinks to a fraction of her size, and everything around her suddenly looks totally unfamiliar. Scientists too have to get used to these curious feelings when they examine matter on tiny scales and at low temperatures: all the behavior we are used to seeing around us is turned on its head.

This is an illustration on understanding quantum boundary phase transitions.
Credit: Abolfazl Bayat, Henrik Johannesson, Sougato Bose, Pasquale Sodano (Article is entitled: "An order parameter for impurity systems at quantum criticality")

"What a curious feeling," says Alice in Lewis Carroll's tale, as she shrinks to a fraction of her size, and everything around her suddenly looks totally unfamiliar. Scientists too have to get used to these curious feelings when they examine matter on tiny scales and at low temperatures: all the behaviour we are used to seeing around us is turned on its head.

In research published today in the journal Nature Communications, UCL scientists have made a startling discovery about a familiar physical effect in this unfamiliar setting.

Phase transitions are a category of physical phenomena in which the properties of a sample and the relationships between the particles that make it up suddenly change. Phase transitions include familiar events such as water turning to ice when temperature drops, or a magnet losing its magnetisation when temperature rises.

On human scales, and at ambient temperatures, phase transitions are well understood. They are linked to the temperature (and hence the vibration, orientation and movement of particles) of an object. In quantum physics, however, phase transitions behave slightly differently, and can even occur close to absolute zero, when virtually no heat is present in a sample. These occur when a factor which affects the whole sample, such as a magnetic field, is changed. But in certain cases, quantum phase transitions can also happen when varying a highly localised factor, such as changing the coupling between a single pair of particles on the edge of such a system. These are called boundary phase transitions and would be like melting an entire iceberg by touching a corner of it with a hot poker.

Dr Abolfazl Bayat and Professor Sougato Bose (both UCL Physics & Astronomy), along with colleagues at other institutions, have probed the nature of boundary phase transitions in quantum systems. For the first time they have identified a measurable quantity that can label the distinct phases of such a system.

"When phase transitions happen, scientists often talk of an 'order parameter'," says Bayat. "This is the value which suddenly changes, such as the orientation of magnetisation in a metal, or the spacing of atoms in a sample which determines whether it is liquid or solid. Getting a handle on order parameters in quantum boundary phase transitions is much harder, but we have identified one in this research."

Bayat and Bose studied a system in which a tiny change applied to a single pair of impurities causes a change in the entire system. The two impurities can either be entangled with each other, or can separately be entangled with the left and right hand parts of the system. Changing the pairing of the impurities acts like a switch on the whole system, triggering a phase transition in the form of a sudden change in the entire sample.

"We found that that a quantity called the Schmidt gap has all the features of an order parameter for this phase transition," says Bose. "That means that mathematically it characterizes all the features of the phase transition in an analogous way to how magnetisation does for a magnet."

However, unlike magnetisation, which can be easily measured, the Schmidt gap is a non-localised quantity which requires every particle in a system to be individually measured. Although, this a challenging task, it is becoming viable in recent experiments in ultra-cold atoms.

This research opens up new possibilities for exploring phase transitions in quantum physics. In particular, where conventional methods which use localised order parameters are not applicable, this gives a new means of studying phase transitions. It may help to determine new phases of matter and shed light into the structure of complex systems.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Abolfazl Bayat, Henrik Johannesson, Sougato Bose, Pasquale Sodano. An order parameter for impurity systems at quantum criticality. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4784

Cite This Page:

University College London. "Melting an entire iceberg with a hot poker: Spotting phase changes triggered by impurities." ScienceDaily. ScienceDaily, 7 May 2014. <www.sciencedaily.com/releases/2014/05/140507100425.htm>.
University College London. (2014, May 7). Melting an entire iceberg with a hot poker: Spotting phase changes triggered by impurities. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/05/140507100425.htm
University College London. "Melting an entire iceberg with a hot poker: Spotting phase changes triggered by impurities." ScienceDaily. www.sciencedaily.com/releases/2014/05/140507100425.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins