Featured Research

from universities, journals, and other organizations

How proteins acquire correct structure: Molecular high-speed origami

Date:
May 9, 2014
Source:
Max Planck Institute of Biochemistry
Summary:
Proteins are responsible for nearly every essential process of life. Their form and structure are of crucial importance for their functionality. Scientists have recently discovered an unknown sequence of reactions which is necessary for newly generated proteins to acquire their correct structure.

GroEL/ES nano-cage (light blue and white) with encapsulated substrate protein (orange).
Credit: Dr. Andreas Bracher © MPI of Biochemistry

Proteins are responsible for nearly every essential process of life. Their form and structure (or their "fold") are of crucial importance for their functionality. Scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich have recently discovered a so far unknown sequence of reactions which is necessary for newly generated proteins to acquire their correct structure. "In the mechanism we found, the folding is accomplished in a number of fast intermediate steps rather than in one single block," explains Manajit Hayer-Hartl, research group leader at the MPIB. "Because this mode of action is energetically more favorable, the proteins are folded not only correctly, but also much faster than previously assumed."

The results of the study have now been published in the Journal Cell.

Proteins are the workhorses of the cell and thus responsible for almost all biological functions including metabolism, signal transmission or the determination of the cell's shape. However, before they can fulfill their various tasks, the chain-like molecules must first adopt an intricate three-dimensional conformation. This process is called protein folding and is one of the most important processes in biology. In fact, in the event of improper folding, proteins are often no more able to carry out their duties, or even tend to clump together in aggregates. This in turn can lead to severe diseases like Alzheimer's or Parkinson's. In order to avoid this, specialized proteins, the so-called chaperones, help other proteins to adopt their proper shape.

The bacterial chaperones GroEL and GroES serve as an example for this principle: together, they build up a cage-like structure in which they encapsulate new, not yet folded proteins, thereby allowing them to fold properly. However, the exact way in which this is accomplished has so far been unclear and is a research topic of the MPIB team led by Manajit Hayer-Hartl and F. Ulrich Hartl, in collaboration with John Engen from Northeastern University in Boston.

Active acceleration of folding

"Our results demonstrate that the chaperones not only prevent protein clumping, but also dramatically accelerate the folding process," explains Florian Georgescauld, scientist at the MPIB. "Surprisingly, the chaperones achieve this by changing the mechanism of folding: Instead of folding in one large single block, the protein gets its final structure in a series of small, rapid steps -- like an elaborate high-speed Origami." The researchers think that splitting up the reaction might render it energetically more favorable, which in turn would lead to increased speed. Hence, the folding process is finished in a few seconds rather than in several minutes.

The study shows for the first time that chaperones can act not only passively, by preventing aggregation, but as an active folding cage that catalyzes the folding process. This results in a high-speed folding mechanism which is of particular biological relevance, so the researchers say, since in this way proteins can be folded faster than they are produced. Thus, a backlog of proteins which are not yet or improperly folded and the disastrous consequences which might go along with this can be avoided.


Story Source:

The above story is based on materials provided by Max Planck Institute of Biochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Florian Georgescauld, Kristina Popova, Amit J. Gupta, Andreas Bracher, John R. Engen, Manajit Hayer-Hartl, F. Ulrich Hartl. GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, 2014; 157 (4): 922 DOI: 10.1016/j.cell.2014.03.038

Cite This Page:

Max Planck Institute of Biochemistry. "How proteins acquire correct structure: Molecular high-speed origami." ScienceDaily. ScienceDaily, 9 May 2014. <www.sciencedaily.com/releases/2014/05/140509110719.htm>.
Max Planck Institute of Biochemistry. (2014, May 9). How proteins acquire correct structure: Molecular high-speed origami. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/05/140509110719.htm
Max Planck Institute of Biochemistry. "How proteins acquire correct structure: Molecular high-speed origami." ScienceDaily. www.sciencedaily.com/releases/2014/05/140509110719.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins